
Matrix Calculus for CS181 (adapted from Math 22b)

Skyler Wu (and Angela Li)

Spring 2022

*Also intended for the brothers and sisters of the Stanford Statistics First-Year Cohort. This is the more
rudimentary version. Written by Skyler Wu ’24.

1 Introduction

Broadly, matrix calculus is the study of multivariable calculus over the spaces of matrices, which allows
for much cleaner calculations, especially in applications to statistics, machine learning, and econometrics,
among others. As we saw in vector calculus, where finding entities such as the gradient or Jacobian
allowed us to perform and execute very elegant calculations and proofs, extending this idea to matrix
calculus allows us to carry this out to an even greater extent.

The crux of matrix calculus involves compiling the many derivatives of either (1) a multivariate function
with respect to one variable or (2) a single function with respect to multiple variables, into a single matrix
or vector, analogous to the ideas regarding derivatives that we have already learned in vector calculus.
Then, in accordance with the many properties of matrices and matrix operations that we learned in 22a,
matrix calculus allows for the execution of elegant calculus via these matrices, bringing together many of
the concepts we have touched upon this year.

In this paper, we will first mathematically introduce the idea of matrix calculus, including fundamental
properties and notation, and the six main types of matrix derivatives, four of which we have already
seen in vector calculus, and two of which are unique to our matrix calculations carried out in this paper.
In this section, we will also be making explicit connections back to both 22a and 22b to emphasize the
elegant intersections of the concepts. Next, we will move to proving various theorems in the form of
matrix derivatives and identities, and will conclude with a brief application of these concepts to machine
learning and provide a derivation via matrix calculus for the well-known least squares regression.

2 Fundamentals, Notation, and Basic Properties

2.1 Notation

We will first review some matrix notation conventions from 22a that are relevant to our upcoming proofs.

2.1.1 Scalars, Vectors, and Matrices

Scalars are denoted by non-bolded, lowercase letters, e.g. a, x, y.

Vectors are defined here as matrices with one column, so all vectors are single-column matrices, i.e.
column vectors or matrices of dimension n×1 for n ∈ Z+. We denote vectors here with bolded, lowercase

1

letters, e.g. a, x, y.

a =


a1
a2
...
an


Matrices will be notated throughout this paper with bolded, uppercase letters, e.g. A, X, Y. Let A be
a m× n matrix, then we have

A =


a11 a12 · · · a1n
a21 a22 · · · a2n
...

...
. . .

...
am1 am2 · · · amn

 .

We can also use the following notation to denote the matrix A, where the first subscript, i, refers to the
corresponding row in the matrix of that element, and the second subscript, j, refers to its corresponding
column in the matrix.

A = [aij] ,

for i = 1, 2, · · · ,m and j = 1, 2, · · · , n [9, p. 4].

Furthermore, we will explicitly define aij to be the entry in the ith row and jth column of A. Note that
we explicitly use the lowercase a in order to avoid confusion with some other mathematical objects to be
described later.

The identity matrix, denoted In, where n is the dimension of this square matrix, is given as follows:

In =


1 0 · · · 0
0 1 · · · 0
...

...
. . .

...
0 0 · · · 1

 .

The inverse of the matrix A, if it exists (based on the Inverse Matrix Theorem from 22a), is denoted
A−1, where

AA−1 = In.

The transpose of the matrix A, is the n×m matrix, denoted AT as follows:

AT =


a11 a21 · · · am1

a12 a22 · · · am2
...

...
. . .

...
a1n am2 · · · amn

 .

Finally, the determinant of the matrix A is denoted by either of the following:

|A| = det(A).

Now, with the relevant notation in place, we move to a brief discussion of an important distinction in
layout of our matrix derivatives.

2

2.1.2 Numerator vs. Denominator Layout [10, p. 1]

While learning about matrix calculus, we learned that there are a few different ways, notationally, to
layout these derivatives, and during our research, found that sticking to one notation throughout a series
of calculations is actually imperative to its accuracy. In this paper, we will be using numerator layout,
as we have been subordinately using throughout 22b, but will take a moment here to make this distinction
clear before proceeding.

When taking the derivative of a vector with respect to another vector, i.e. ∂y
∂x , which we have seen in 22b

(with the Jacobian) and will detail further in the next section, there are often two ways people consider
laying out the resulting derivative matrix. Assuming y is an m × 1 column vector and x is an n × 1
column vector, then this resulting derivative matrix (i.e., the Jacobian matrix), ∂y

∂x , can either be of size
m×n or of size n×m. This is the primary difference between numerator and denominator layout, which
we will now detail more explicitly.

Numerator layout involves laying out the derivative matrix based on the dimensions of y and xT : in
other words, the resultant ∂y

∂x matrix should have the same dimensions as yxT . Thus, under numerator

layout, ∂y
∂x should be an m× n matrix, i.e., the Jacobian notation we are familiar with from 22b.

Denominator layout involves laying out the derivative matrix based on x and yT : in other words, the
resultant ∂y

∂x should have the same dimensions as xyT . Thus, under denominator layout, ∂y
∂x should be

an n×m matrix.

The implications and structure of numerator layout will be more clear once we introduce the matrix
derivatives explicitly in the next section.

Note: Although we have introduced two main layouts here, there are more notational choices than the
aforementioned numerator and denominator layouts. In some cases, mathematicians or authors may
choose a certain notation independently for one type of derivative, depending on what calculations they
are working with. There are a variety of benefits and drawbacks to each notation, so while we are choosing
to remain consistent with numerator layout throughout this paper, neither is absolutely better than any
other; rather, we simply want to maintain consistency and clarity.

2.2 Six Main Types of Matrix Derivatives

Now that we have established the necessary matrix layout, we will proceed with matrix differentiation.
There are six main types of derivatives expressible as matrices, detailed in the table below [10, p. 1].

Scalar Vector Matrix

Scalar ∂y
∂x

∂y
∂x

∂Y
∂x

Vector ∂y
∂x

∂y
∂x

Matrix ∂y
∂X

Table 1: The above table summarizes the six main matrix derivatives, four of which we have seen before
in 22b (3.3.1-3.3.4) and two of which are new (3.3.5 and 3.3.6), that we will be explaining in the next six
subsections. For each derivative in the table, the top row explains what we are taking the derivative of,
and the leftmost column is what entity we are taking this derivative with respect to.

3

In section 2.2.2, we introduced the ideas of numerator and denominator layout, including the key funda-
mental difference between the two and the importance of sticking with one notation. Again, we will be
using numerator notation here, so our partial derivatives with respect to the numerator will be laid out
according to the shape of the numerator, and the partial derivatives with respect to the denominator will
be laid out according to the shape of the transpose of the denominator.

2.2.1 Scalar by Scalar Derivative

Definition 2.1 (Scalar by Scalar Derivative). From single-variable calculus, the scalar by scalar deriva-
tive, denoted

∂y

∂x
,

is a scalar found by taking the derivative of the scalar y with respect to x. [8, p. 106]

2.2.2 Scalar by Vector Derivative

Definition 2.2 (Scalar by Vector Derivative). From 22b, the scalar by vector derivative, denoted

∂y

∂x
=
[

∂y
∂x1

∂y
∂x2

· · · ∂y
∂xn

]
=

[
∂y

∂xj

]
is a 1× n row vector, in which each element is found by taking the derivative of y with respect to that
corresponding component of x, assuming y is a scalar and x is a n× 1 column vector [8, p. 112].

Remark: As we defined in 22b, the gradient of a scalar function f with respect to a vector x ∈ Rn,
notated ∇f , is the transpose of the scalar by vector derivative [8, p. 112].

∇f =


∂y
∂x1
∂y
∂x2
...
∂y
∂xn


From this definition, we saw useful applications to the directional derivative, tangent planes, etc.

2.2.3 Vector by Scalar Derivative

Definition 2.3 (Vector by Scalar Derivative). From 22b, the vector by scalar derivative, denoted

∂y

∂x
=


∂y1
∂x
∂y2
∂x
...

∂ym
∂x

 =

[
∂yi
∂x

]

is a m× 1 column vector (maintaining numerator layout), in which each element is found by taking the
derivative of the ith component of a m× 1 column vector y, i = 1, · · · ,m with respect to a scalar x. [8,
p. 120]

Remark: As we defined in 22b, the tangent vector, whether that be velocity function or another tangent
to a curve, is a vector by scalar derivative.

Note on notation: We emphasize again the importance of maintaining numerator notation throughout
this paper in order to execute sound calculations. For example, our vector by scalar derivative from this
section, ∂y

∂x , is a n× 1 column vector while the scalar by vector derivative from the section before, ∂y
∂x , is

a 1× n row vector assuming x and y are both n× 1 column vectors.

4

2.2.4 Vector by Vector Derivative

Definition 2.4 (Vector by Vector Derivative). From 22b, the vector by vector derivative, more familiarly
known to us as the Jacobian matrix, is denoted

∂y

∂x
=


∂y1
∂x1

∂y1
∂x2

· · · ∂y1
∂xn

∂y2
∂x1

∂y2
∂x2

· · · ∂y2
∂xn

...
...

. . .
...

∂ym
∂x1

∂ym
∂x2

· · · ∂ym
∂xn

 =

[
∂yi
∂xj

]

and is a m× n matrix, in which the i, jth element is found by taking the derivative of the the ith

component of a m×1 column vector y, i = 1, · · · ,m with respect to the jth component of a n×1 column
vector x, j = 1, · · · , n [8, p. 209].

2.2.5 Scalar by Matrix Derivative

Definition 2.5 (Scalar by Matrix Derivative). The scalar by matrix derivative of a scalar function y
with respect to an m×n matrix X is an n×m matrix in which the i, jth element is found by taking the
derivative of y with respect to the j, ith element of X [essentially, with respect to XT [10, p. 1], notated
as follows:

∂y

∂X
=


∂y

∂x11

∂y
∂x21

· · · ∂y
∂xm1

∂y
∂x12

∂y
∂x22

· · · ∂y
∂xm2

...
...

. . .
...

∂y
∂x1n

∂y
∂x2n

· · · ∂y
∂xmn

 =

[
∂y

∂xji

]
.

Example 2.1. Let y = sin(a)b2ecd and

X =

[
a b
c d

]
,

so

XT =

[
a c
b d

]
.

Then,
∂y

∂X
=

[∂y
∂a

∂y
∂c

∂y
∂b

∂y
∂d

]
=

[
cos(a)b2ecd sin(a)b2ecd
2sin(a)becd sin(a)b2ec

]
.

2.2.6 Matrix by Scalar Derivative

Definition 2.6 (Matrix by Scalar Derivative). The matrix by scalar derivative of an m × n matrix Y
with respect to a scalar function x is an m× n matrix in which the i, jth element is found by taking the
derivative of the i, jth element of Y with respect to x [10, p. 1], notated as follows:

∂Y

∂x
=


∂y11
∂x

∂y12
∂x · · · ∂y1n

∂x
∂y21
∂x

∂y22
∂x · · · ∂y2n

∂x
...

...
. . .

...
∂ym1

∂x
∂ym2

∂x · · · ∂ymn

∂x

 =

[
∂yij
∂x

]
.

5

Example 2.2. Let

Y =

[
x cos(x)
ex x2

]
,

then
∂Y

∂x
=

[
1 −sin(x)
ex 2x

]
.

2.3 Matrix Differentiation Rules

Thankfully, the differentiation rules we know from Calc I through Math 22b almost directly carry over
into matrix differentiation.

2.3.1 Sum Rule

By linearity of differentiation, as with single-variable calculus and vector calculus, the derivative of the
sum is the sum of the derivatives [7, p. 8]. Let u and v be scalars, and X be an m× n matrix, then we
have

∂(u+ v)

∂X
=

∂u

∂X
+

∂v

∂X
.

Similarly, if U and V are m× n matrices and x is a scalar, we have

∂(U+V)

∂x
=

∂U

∂x
+

∂V

∂x
.

2.3.2 Product Rule

Our product rule for matrix derivatives is analogous to those for vectors and scalars [7, p. 8]. Let u and
v be scalars, and X be an m× n matrix, then we have

∂(uv)

∂X
= u

∂v

∂X
+ v

∂u

∂X
.

Similarly, if U and V are n× n matrices and x is a scalar, we have

∂(UV)

∂x
= U

∂V

∂x
+V

∂U

∂x
.

2.3.3 Chain Rule

Finally, our chain rule is also analogous [7, p. 15]. Let u and y be scalars, where u is in terms of X and
y is in terms of u and X be an m× n matrix, then we can take the derivative of y with respect to X as
follows:

∂y

∂X
=

∂y

∂u

∂u

∂X
.

Similarly, if Y is a m× n matrix in terms of u, and u and x are scalars with u in terms of x, then

∂Y

∂x
=

∂Y

∂u

∂u

∂x
.

6

3 Select Matrix Derivatives and Identities

3.1 Thinking Element-wise

The main strategy for computing matrix derivatives is to first find the partial derivative with respect to an
arbitrary element, and then generalize our results to the entire matrix/vector as appropriate. To demon-
strate the concept of breaking down complex vector and matrix derivatives into element-sized pieces, we
will proceed to prove a few theorems/identities that are commonly used in machine learning and statistics.

Note that in this paper, all vectors should be interpreted as column vectors. Out of consideration for
paper length, in this paper, we will focus on examples of taking the derivative of a scalar function with
respect to a vector or matrix.

Theorem 1. ∂wTx
∂w = ∂xTw

∂w = xT , for x,w ∈ Rn [4, p. 4-6].

Proof. Let f(w) = wTx = xTw (as dot products are commutative). Note that f is a scalar function, so
we are taking the derivative of a scalar function with respect to a vector – our answer, per our notational
norms, should be a row vector. Then, expanding element-wise, we have the following, where xi is the ith

element of x and wi is the ith element of w:

f(w) = x1w1 + x2w2 + · · ·+ xnwn.

We can rewrite our derivative as:

∂wTx

∂w
=

∂f

∂w
=
[

∂f
∂w1

∂f
∂w2

. . . ∂f
∂wn

]
.

For an arbitary wi, using our partial derivative knowledge from Math 22b, we know that there is only
one relevant term, and thus we have:

∂f

∂wi
=

∂(x1w1 + x2w2 + · · ·+ xnwn)

∂wi
= xi.

Generalizing this result for all partial derivatives with respect to wi, for all i ∈ 1, 2, . . . n, we have:

∂wTx

∂w
=

∂f

∂w
=
[
x1 x2 . . . xn

]
= xT , as x itself is defined as a column vector.

*note: in some references, the derivative may appear as just x, but for notational consistency, we proceed
with the transpose [11, p. 10].

Intuitively, we can think of this result as the vector/matrix analog of d
dxcx = c. This result will be crucial

in our matrix calculus proof of the least-squares regression solution.

Let us try a slightly more involved example.

Theorem 2. ∂xTx
∂x = 2xT , with x ∈ Rn [7, p. 9].

*note: [7, p. 9] reports 2x, but we include the transpose for notational consistency.

7

Proof. We proceed similarly as the example above. Let f(x) = xTx = x1
2 + x2

2 + · · · + xn
2. Because

we are taking the derivative of a scalar function with respect to a vector, by our notational norms, our
derivative should turn out to be a row vector. We can rewrite our derivative as follows:

∂xTx

∂x
=

∂f

∂x
=

∂(x1
2 + x2

2 + · · ·+ xn
2)

∂x
=
[

∂f
∂x1

∂f
∂x2

. . . ∂f
∂xn

]
.

Heeding the paradigm of proceeding element-wise, let us find the partial derivative with respect to an
arbitrary xi: We can see from the definition of f that there is only one relevant term, and thus, we have:

∂f

∂xi
=

∂(x1
2 + x2

2 + · · ·+ xn
2)

∂xi
= 2xi.

Generalizing this result to all partial derivatives with respect to xi, for all i ∈ 1, 2, . . . n, we have:

∂xTx

∂x
=

∂f

∂x
=

∂(x1
2 + · · ·+ xn

2)

∂x
=
[
2x1 2x2 . . . 2xn

]
.

∂xTx

∂x
= 2

[
x1 x2 . . . xn

]
= 2xT , as x is itself a column vector.

This result is the vector/matrix analog of d
dxx

2 = 2x.

The next derivative identity is a generalization of the derivative identity we just proved above. In the
previous identity, we simply set A = I, the identity matrix.

Theorem 3. ∂xTAx
∂x = xT (A+AT), where x ∈ Rn and A is a constant n× n square matrix [4, p. 6].

Proof. Before we start, we need to remember that xTAx is scalar. As such, we are still taking the
derivative of a scalar with respect to a vector: by the rules of numerator layout, our answer should be a
row vector.

As usual, we will proceed with our element-wise paradigm. To reiterate, we will treat x as a column
vector. Because this derivative is a bit more complicated than the previous two, let us draw out x, xT ,
and A for intuition:

x =


x1
x2
...
xn

 , xT =
[
x1 x2 . . . xn

]
, A =

a11 · · · a1n
...

. . .
...

an1 · · · ann

 .

Let f(x) = xTAx. We approach piece-by-piece. By definition of matrix multiplication, and looking at
the shapes of xT and A, we see:

xTA =

[
n∑

i=1

xiai1

n∑
i=1

xiai2 · · ·
n∑

i=1

xiain

]
.

Now, let us right-multiply by x:

f(x) = xTAx =

[
n∑

i=1

xiai1

n∑
i=1

xiai2 · · ·
n∑

i=1

xiain

]
x1
x2
...
xn

 =

n∑
j=1

(
xj

n∑
i=1

xiaij

)
.

8

Because the inner summation has no effect on xj , we can treat it as a “constant” with respect to the
inner summation and rewrite our expression as:

f(x) =

n∑
j=1

(
xj

n∑
i=1

xiaij

)
=

n∑
j=1

n∑
i=1

(xixjaij).

Now, abiding by our paradigm of proceeding element-wise and then generalizing, let us take the partial
derivative of f with respect to an arbitrary xk (we use k to avoid confusion with the indexing of our nested
summations). One non-trivial challenge is to consider which terms in our nested summation are relevant
to our partial derivative with respect to xk – simply speaking, any terms in our nested summation that
have an xk are relevant terms. A particular term in our nested summation contains an xk if i = k, j = k,
or both i, j = k.

Naively, we could try to find the relevant terms by setting j = k and i = k in our nested summation
separately to get:

n∑
i=1

xixkaik +
n∑

j=1

xkxjakj ,

as our relevant terms, but this is not correct!

The expression above is incorrect because we overcount the term xkxkakk, which appears in both (now-
separated) summation expressions – once when i = k in the first summation, and once when j = k in the
second summation. Thus, the true list of relevant terms is actually:

(

n∑
i=1

xixkaik) + (

n∑
j=1

xkxjakj)− xkxkakk.

Having found the relevant terms (relevant, as in they do not disappear when taking the partial derivative
with respect to xk), we may be tempted to directly take the partial derivative with respect to xk, but
there is a dangerous nuance:

∂(xkxkakk)

∂xk
= 2xkakk, while

∂(xixkaik)

∂xk
= xiaik, if i ̸= k.

To account for this nuance, let us rewrite the list of relevant terms. Let frelevant(x) represent the relevant
terms to the partial derivative with respect to xk:

frelevant(x) = (
n∑

i=1

xixkaik) + (
n∑

j=1

xkxjakj)− (xkxkakk).

frelevant(x) =

(

n∑
i=1,i ̸=k

xixkaik) + xkxkakk

+

(

n∑
j=1,j ̸=k

xkxjakj) + xkxkakk

− xkxkakk.

Now, we can finally take the partial derivative with respect to xk:

∂f

∂xk
=

∂frelevant
∂xk

=

(
n∑

i=1,i ̸=k

xiaik) + 2xkakk

+

(

n∑
j=1,j ̸=k

xjakj) + 2xkakk

− 2xkakk.

∂f

∂xk
= (

n∑
i=1,i ̸=k

xiaik) + (

n∑
j=1,j ̸=k

xjakj) + 2xkakk.

9

∂f

∂xk
= (

n∑
i=1,i ̸=k

xiaik) + xkakk + (
n∑

j=1,j ̸=k

xjakj) + xkakk.

∂f

∂xk
= (

n∑
i=1

xiaik) + (
n∑

j=1

xjakj).

At this point, we proceed to generalize our expression for an arbitrary partial derivative to the larger
matrix/vector derivative:

∂xTAx

∂x
=

[
(

n∑
i=1

xiai1 +
n∑

j=1

xja1j) (
n∑

i=1

xiai2 +
n∑

j=1

xja2j) . . . (
n∑

i=1

xiain +
n∑

j=1

xjanj)

]
.

To make things easier, let us rewrite the derivative as the sum of two vectors:

∂xTAx

∂x
=

[
n∑

i=1

xiai1

n∑
i=1

xiai2 . . .

n∑
i=1

xiain

]
+

[n∑
j=1

xja1j

n∑
j=1

xja2j . . .

n∑
j=1

xjanj

]
.

At this point we refer back to the visuals of xT and A:

x =


x1
x2
...
xn

 , xT =
[
x1 x2 . . . xn

]
, A =

a11 · · · a1n
...

. . .
...

an1 · · · ann

 .

And, we realize the following:

xTA =

[
n∑

i=1

xiai1

n∑
i=1

xiai2 . . .
n∑

i=1

xiain

]
.

We also realize that if

Ax =



n∑
j=1

xja1j

n∑
j=1

xja2j

...
n∑

j=1

xjanj


,

then

(Ax)T = xTAT =

[n∑
j=1

xja1j

n∑
j=1

xja2j . . .

n∑
j=1

xjanj

]
.

Lastly, substituting these compact matrix expressions back into our expression for the overall matrix
derivative, we obtain the following final result:

∂xTAx

∂x
= xTA+ xTAT = xT (A+AT).

10

One final observation about this result is that if A is symmetrical (which occurs quite often in the case
of Kernel-Based Regression and other machine learning algorithms), we have the following neat form:

∂xTAx

∂x
= xT (2A).

*note: some texts report the result as (A+AT)x, but once again, we are following the numerator layout.

3.2 Derivative of the Inverse of a Matrix

While we will present the majority of our derivations in this paper proceeding element-wise, we include
this theorem to demonstrate the utility of the matrix product rule.

Theorem 4. Let Y be a n× n matrix with an inverse, Y−1, where all the elements of Y are functions
of the scalar x. Then, the derivative of Y−1 is

∂Y−1

∂x
= −Y−1∂Y

∂x
Y−1.

Proof. By definition of the inverse of a matrix, we know

YY−1 = In.

Differentiating, using the product rule for matrix differentiation, we get

Y−1∂Y

∂x
+

∂Y−1

∂x
Y = 0,

where the derivative of the identity matrix with respect to x equals zero since all elements of In are
scalars of value 1. Now, we can rearrange the above equation, so we have

∂Y−1

∂x
Y = −Y−1∂Y

∂x
.

Finally, we right-multiply both sides of the equation by Y−1 and applying the first property that YY−1 =
In to get our final result [1, p. 364].

∂Y−1

∂x
YY−1 = −Y−1∂Y

∂x
Y−1. (1)

∂Y−1

∂x
In = −Y−1∂Y

∂x
Y−1. (2)

∂Y−1

∂x
= −Y−1∂Y

∂x
Y−1. (3)

3.3 Derivative of the Determinant of a Matrix with respect to Itself

The following theorem was selected because it is used in calculations involving the Multivariate Gaussian
distribution, which is widely used in statistical and machine learning applications. Specifically, the
probability density function of the Multivariate Gaussian distribution involves taking the determinant of
the covariance matrix. We will omit further discussion of the Multivariate Gaussian distribution, and
proceed to focus on the derivative.

11

Theorem 5.
∂det(A)

∂A
= A# = det(A)A−1, where A# is the adjoint matrix of A.

Proof. Before we start the formal proof, we must introduce the submatrix, cofactor matrix and adjoint
matrix.

Definition 3.1 (Submatrix). If A is a matrix, then the submatrix Aij (note the use of the uppercase
Aij) of A is the matrix formed by deleting the ith row and jth column of A [8, p. A15].

Definition 3.2 (Cofactor Matrix). For n × n square matrix A, let aij be the entry in the ith row and
jth column of A. Let Aij be the submatrix of A corresponding to aij (i.e. deleting row i and column j).
The corresponding cofactor, Cij , of aij is defined as (−1)i+jdet(Aij) [9, p. 11].

Recall from Math 22a, that we can find the determinant of A through cofactor expansion down any row
or column. For example, if we were to calculate the determinant via cofactor expansion of the first row
of A, then we have:

det(A) =

n∑
j=1

a1jC1j .

The cofactor matrix, C of n× n square matrix A is thus:

C =


C11 · · · C1n

C21 · · · C2n
...

. . .
...

Cn1 · · · Cnn

 .

Definition 3.3 (Adjoint Matrix). For an n× n square matrix A, if C is the cofactor matrix of A, then
the adjoint matrix of A, denoted as A#, is defined as A# = CT [9, p. 11].

Let us write out the terms of A# for intuition, as we will be using it quite frequently in our proof:

A# =


C11 · · · Cn1

C12 · · · Cn2
...

. . .
...

C1n · · · Cnn

 .

Lemma. If A is invertible, then A−1 =
A#

det(A)
.

Proof. (of the lemma)

We can rewrite this statement as:

det(A)I = AA#, where I is the n× n identity matrix.

Recall, by definition of cofactor expansion, that we can calculate the determinant of n×n square matrix
A by expanding across any row k:

det(A) =
n∑

j=1

akjCkj

12

Let Z = AA#. If i = j, then by definition of matrix multiplication (taking row i from A and column j
from A# as we wrote out above),

zij = zii = ai1Ci1 + ai2Ci2 + · · ·+ ainCin = det(A)

In other words, because what we proved above holds for all zii, we have shown that the diagonal entries
of Z are all det(A). Now, take i ̸= j. By definition of matrix multiplication, we have:

zij = ai1Cj1 + ai2Cj2 + · · ·+ ainCjn

Consider the matrix A′, which is obtained by replacing the jth row of A with the ith row, so that we have
2 rows with the same entries (inspired by [6]). By the Invertible Matrix Theorem, because the rows of A′

are clearly not linearly independent, A′T is not invertible and thus has a determinant of 0. Because the
determinant of the transpose is equal to the determinant of the original matrix, it follows that det(A′) = 0.

With this in mind, let us write out the expression for det(A′) via cofactor expansion across its jth row,
noting that the jth row of A′ is, by our intention, the ith row of A. Also, note that because we are doing
cofactor expansion across the jth row of A′, this means that the cofactors we are concerned with are
calculated from submatrices that all do not include any elements of the jth row. Thus, the cofactors we
are working with can be directly copied from the cofactors corresponding to the elements in the jth row
of the original matrix A. Thus, we have:

det(A′) = 0 = ai1Cj1 + ai2Cj2 + · · ·+ ainCjn = zij ,

from above.

The key result here is that if i ̸= j, then zij = 0, for Z = AA#. Thus, we conclude that AA# is a matrix
with its diagonal entries equal to det(A), and all other entries equal to 0.

In other words, we have proven the following:

det(A)I = AA#.

Now, we can proceed uninterrupted with our proof of the derivative of the determinant with respect
to the matrix itself. Note that the determinant of a n × n square matrix A is always a scalar. By our
understanding of the derivative of a scalar with respect to a matrix, we know that the resultant derivative
should have the same dimensions as the transpose of the original matrix, to stay consistent with notation.

Following our paradigm of proceeding element-wise, we have the following:

∂det(A)

∂A
=


∂det(A)
∂a11

· · · ∂det(A)
∂a1n

...
. . .

...
∂det(A)
∂an1

· · · ∂det(A)
∂ann


T

.

*note: the presence of the transpose is to stay consistent with our numerator layout notational norms.
We work with the transpose of the derivative matrix (as opposed to just relabeling our indices) because
we want our indices to be consistent across A, C, and A# as much as possible.

The crucial intuition here is that we can find the determinant of a square matrix via cofactor expansion
along any of its rows. Thus, to calculate each of the n2 entries of our derivative matrix (or its transpose,

13

in our case), we can be selective in how we express det(A) [7, p. 10]. Namely, when trying to find any
entry in the ith row of (the transpose) of the derivative matrix, we will express the determinant as the
cofactor expansion down the ith row of A.

The entry in the ith row and jth column of (the transpose) of this derivative matrix, for all valid indices
i, j, can be written as below:

∂det(A)

∂aij
=

∂(
∑n

k=1 aikCik)

∂aij
.

Note that aij itself appears in one term, and one term only, in this particular summation expression for
the determinant. Also, note that aij has no influence on Cij , as we explicitly cross out the ith row and
jth column when calculating Cij . Thus, we have our result:

∂det(A)

∂aij
=

∂(
∑n

k=1 aikCik)

∂aij
= Cij .

Having found the partial derivative (i.e. one entry) with respect to an arbitrary aij , we conclude the
following:

∂det(A)

∂A
=


∂det(A)
∂a11

· · · ∂det(A)
∂a1n

...
. . .

...
∂det(A)
∂an1

· · · ∂det(A)
∂ann


T

=

C11 · · · C1n
...

. . .
...

Cn1 · · · Cnn


T

= CT .

At this point, we know that CT = A#. From our lemma, we also know that A−1 =
A#

det(A)
. Rewriting

this expression to isolate the adjoint matrix, we have (presuming A is invertible):

det(A)A−1 = A#.

Next, to bring in CT , we have:
CT = A# = det(A)A−1.

Finally, we have proven our theorem:

∂det(A)

∂A
= A# = det(A)A−1.

4 Application to Statistics and Machine Learning

Finally, we will show how matrix calculus is integral to statistics and machine learning by demonstrating
its applications to linear regression.

4.1 Matrix Calculus Derivation of Optimal Least-Squares Linear Regression

4.1.1 Introducing the Problem

Given a set of n datapoints in the form (x1, y1), (x2, y2), . . . (xn, yn), where xi ∈ RD and yi ∈ R1 for
i = 1, 2, . . . n, we want to find the line-of-best-fit (or plane, or hyperplane, depending on the dimensions
of our data) that best captures the relationship between our input variables x1, . . .xn and our output
variables y1, . . . yn [5, p. 6]. For sake of notation, we will treat each individual xi as a column vector.

14

Remark: In this section, we will generalize the word “line” to mean not just a literal line in 2D, but also
its analogs in higher dimensions (i.e., plane, hyperplane, etc.).

Given that our input variables are all in RD (D as in “dimension”), our line-of-best-fit can be written in
the following form, where ŷi represents our predicted value (i.e. best guess) of yi for a given input xi.
Let xi be expressed as (xi1, . . . xiD).

ŷi = w0 + w1xi1 + · · ·+ wDxiD.

Note the inclusion of the constant term w0 in this expression. Let the column vector w = (w0, w1, . . . wD)
be defined as the weights of our line-of-best-fit. Observe that w ∈ RD+1, as opposed to RD.

To account for the constant coefficient term, w0, and to make calculations cleaner, from this point on-
wards, we will redefine each xi by appending a 1 to the beginning of each of our input datapoints: now,
xi = (1, xi1, . . . xiD) for i = 1, 2, . . . n. Now, note that each xi ∈ RD+1. This trick is called the the bias
trick [5, p. 7]. This is useful because we can now write each of our predicted values ŷi as ŷi = wTxi.

Our goal now is to find the best set of weights, w for our dataset. Observe that yi−ŷi is the error/difference
between the actual y-value and our prediction. We define the best set of weights, w∗, as the set of weights
that minimizes the sum of the squared errors across our data:

w∗ = argmin
w

n∑
i=1

(yi − ŷi)
2.

We include the squared error for the following intuitive reason: If our set of weights overpredicts yj by 1
and underpredicts yi by 1, the sum of the errors of these two datapoints would be 0, which is clearly not
very reflective of the goodness of our model. The squared error helps us minimize the magnitude of the
errors. We call this expression for the error the least-squares error. Now, we can proceed to set up our
optimization.

4.1.2 Setting Up the Optimization

Recall that because of the bias trick, we can write each of our predicted outputs as ŷi = wTxi (note that
the same set of weights w are used across all datapoints!). Thus, we can rewrite the equation we want
to minimize as:

f(w) =
n∑

i=1

(yi −wTxi)
2.

4.1.3 Taking the Matrix Derivative [5, p. 11]

To find the minima, we will proceed to take the derivative/gradient of f with respect to the entire vector
w and set it equal to 0. By the chain rule and the sum rule, we have:

∂f

∂w
=

n∑
i=1

2(yi −wTxi)
∂(−wTxi)

∂w
= 0.

We are confident that taking the gradient will help us find the true optimal weights that minimize our
least-squares error because f is a convex function. For sake of time, we will omit the proof of why f
is a convex function. But, the implication of f being a convex function, for our purposes, is that any
local minimum of f is guaranteed to be a global minimum of f [3, p. 2]. Here, we encounter a matrix
derivative that we had proven earlier in this paper:

15

∂(−wTxi)

∂w
= −∂(wTxi)

∂w
= −xi

T .

Substituting, we have:

∂f

∂w
=

n∑
i=1

2(yi −wTxi)(−xi
T) = 0.

To make things cleaner, we can multiply everything by −1
2 and then split apart the summation expression:

n∑
i=1

(yi −wTxi)(xi
T) =

n∑
i=1

(
yixi

T − (wTxi)xi
T
)
=

n∑
i=1

yixi
T −

n∑
i=1

(wTxi)xi
T = 0.

Discarding the intermediate expressions, we have:

n∑
i=1

yixi
T −

n∑
i=1

(wTxi)xi
T = 0.

It follows that
n∑

i=1

yixi
T =

n∑
i=1

(wTxi)xi
T .

Because wTx and yi are scalars, we can take the transpose of both sides of our equation to get rid of the
transpose signs and clean things up:

(
n∑

i=1

yixi
T)T =

(
n∑

i=1

(wTxi)xi
T

)T

.

n∑
i=1

yixi =
n∑

i=1

(wTxi)xi.

Recall from property of dot products, that the output of a dot product between two vectors is always
scalar, and recall from general vector properties, that for scalar c and vector x, cx = xc. Also, recall that
dot products are commutative: wTx = xTw. Thus, because we are trying to solve for the optimal w, we
have:

n∑
i=1

yixi =
n∑

i=1

(wTxi)xi =
n∑

i=1

xi(w
Txi) =

n∑
i=1

xi(xi
Tw).

Once again, discarding the intermediate expressions, we have:

n∑
i=1

yixi =
n∑

i=1

xi(xi
Tw).

4.1.4 Converting to Matrix Form

Our end goal is to find and isolate the optimal w. To get rid of the summation signs, we can rewrite the
sums as the products of matrices. At this point, let us define X to be an n (no. of datapoints) × (D+1)
(dimensions of each xi, with the appended 1) matrix:

X =


← x1

T →
← x2

T →
...

← xn
T →

 =


x11 · · · x1(D+1)

x21 · · · x2(D+1)
...

. . .
...

xn1 · · · xn(D+1)

 .

16

*note: we add in the transpose symbol because, as defined above, xi are column vectors.
*note: because of the bias trick, xi1 = 1, for i = 1, 2, . . . , n.

For clarity, let us write out XT ∈ R(D+1)×n as well: it will become useful for intuition very soon.

XT =


x11 · · · xn1
x12 · · · xn2
...

. . .
...

x1(D+1) · · · xn(D+1)

 .

Let us define y to be an n× 1 column vector with entries y1, . . . yn:

y =


y1
y2
...
yn

 .

The key observation here is that, by definition of matrix multiplication, XTy =
n∑

i=1

yixi.

Next, note that because w can be treated as a constant and is unchanged by the indices of the summation,
as opposed to xi, which clearly changes with i, we can pull the w out of the summation:

n∑
i=1

xi(xi
Tw) = (

n∑
i=1

xixi
T)w.

Observe that for all xi, xixi
T returns an R(D+1)×(D+1) matrix (as xi is a column vector and xi

T is a row
vector). Naturally, the summation of all the xixi

T should also be R(D+1)×(D+1).

To find an elegant, compact matrix expression for this not-so-friendly-looking summation, we proceed by
the element-wise paradigm. Note that if Q = xkxk

T (using k to avoid confusion), then qij = xkixkj .

Now, consider Z =
n∑

k=1

xkxk
T : it follows that zij =

n∑
k=1

xkixkj .

Let S = XTX, with X as defined earlier. Recall that X is constructed by vertically stacking xi
T ’s.

With this definition of S, and our intuition about matrix multiplication, we conclude that sij =

n∑
k=1

xkixkj .

Because S ∈ R(D+1)×(D+1), Z ∈ R(D+1)×(D+1), and because sij = zij =
n∑

k=1

xkixkj , it follows that

XTX = S = Z =
n∑

k=1

xkxk
T .

4.1.5 Moore-Penrose Pseudoinverse Result

Rewriting our optimization results from 4.1.3, we have:

n∑
i=1

yixi =

n∑
i=1

(wTxi)xi.

17

n∑
i=1

yixi = (
n∑

i=1

xixi
T)w.

Substituting our matrix expressions for these summations, we have:

XTy = (XTX)w.

Assuming that XTX is invertible (we omit the proof for now), we can solve for w∗ [5, p. 11]:

w∗ = (XTX)−1XTy.

*note: the w∗ is used to indicate that this is our optimal set of weights.
*note: [9, p. 287-288] arrives at the same result using a different proof.

The expression (XTX)−1XT is known as the Moore-Penrose Pseudoinverse, which itself has many unique
properties that are outside the scope of this paper. Intuitively, we can think of it as the equivalent of the
“inverse” of a non-square matrix [5, p. 11].

4.2 Toy Example

To provide a more numerical, illustrative example of the Optimal Least-Squares problem, we created a
toy data set and attempted to find the line (or in this case, plane, because each xi ∈ R2) of best fit.

The Python code implementation can be found here.

For this toy example, we will be working with data of the form (xi = (xi1, xi2), yi). In other words, for
each data point, our xi ∈ R2, and our yi ∈ R1.

To generate our toy data set, we randomly generated 20 datapoints, with each xi1 and xi2 generated from
a random Uniform distribution between 0 and 20. We generated each yi through the following simple
formula, where ϵ ∼ N(0, 0.12) (i.e., mean 0 and standard deviation 0.1) is included to generate some
random noise:

yi = 2xi1 + 3xi2 + ϵ.

Thus, we would expect the calculated vector of optimal weights w∗ to be somewhere around w∗
0 = 0

(because the mean of the noise term is 0), w∗
1 = 2, w∗

2 = 3, for our plane of best fit:

ŷi = w∗
0 + w∗

1xi1 + w∗
2xi2.

To form our data matrix, X, we append a column of 1s as discussed earlier in the bias trick to get the
X matrix shown below (only showing 9 datapoints for formatting), where the second column is all of our
x1’s and the third column is all of our x2’s. Note that in this example, X ∈ R20×3. Our y vector of true
targets is just a column vector in R20.

X =



1.00 4.17 15.36
1.00 9.63 13.76
1.00 8.41 7.74
1.00 17.18 12.30
1.00 3.42 8.55
...

...
...

1.00 5.41 14.05
1.00 19.16 2.57
1.00 14.04 9.69
1.00 5.95 10.32


, y =



54.39
60.55
39.96
71.27
32.51
...

44.98
45.94
57.21
42.90


.

18

https://github.com/skbwu/22b_matrixcalc_linreg

Plugging in these values for X and y into our derived formula for the Optimal Least Squares Linear
Regression weights, w∗ = (XTX)−1XTy, we calculate our optimal w∗ to be:

w∗ =

w∗
0 = −0.0763
w∗
1 = 2.0008

w∗
2 = 3.0040

 .

It follows that our plane of best fit equation is:

ŷi = −0.0763 + 2.0008xi1 + 3.0040xi2.

This is very close to the true data-generating formula, noting that the mean of ϵ is 0:

yi = ϵ+ 2xi1 + 3xi2.

We include the following plot to show how our calculated optimal weights w∗ really do capture the linear
regression relationship of our data. The plane-of-best-fit does fit all of our data points very well:

Figure 1: Visualization of our Optimal Weights’ Performance

4.3 Remarks

Linear regression is a fundamental, yet very powerful technique in applied machine learning and statistics.
The results we derived above tell us that for any data set with scalar yi’s, we can easily find the line-of-
best-fit (or plane, or hyperplane, depending on dimensions) through our points (as long as each data point
is of the same dimensions, of course). With our w∗ and the resultant line-of-best-fit, we can effectively
predict the output variable of a new datapoint, ˆynew, given a new input variable xnew. For example,
we could use linear regression to predict children’s heights as a function of their parents’ heights and
other environmental factors. We could also use linear regression to predict a company’s next-quarter
sales based on certain market variables and consumer data. The uses are endless.

5 Conclusion

From this brief overview of matrix calculus, it is evident that simplifying calculations involving compli-
cated derivatives by condensing these derivatives into elegant matrices with flexible properties allows us
to derive and perform a wide array of computations and proofs, a principle that we have already seen

19

frequently in 22b with vector calculus. We also saw that these matrix derivatives have extremely useful
applicability to fields such as statistics and machine learning, as detailed in this paper with the example
of least squares regression. This being said, there are countless other identities involving matrix deriva-
tives and other applications in the above fields that delve further into the relevancy of matrix calculus in
these interdisciplinary applications, such as the multivariate distributions in statistics, namely the mul-
tivariate Gaussian distribution and the derivation of its maximum likelihood estimator (MLE), principal
components in psychometrics [9, p. 273-448], and many more.

References

[1] Abadir, Karim M., and Jan R. Magnus. Matrix Algebra. Vol. 1. Cambridge University Press, 2005.

[2] Adams, Ryan. “COS 302 Precept 6.” COS 302 / SML 305: Mathematics for Numerical Computing
and Machine Learning, Princeton University, 2020,
www.cs.princeton.edu/courses/archive/spring20/cos302/files/COS 302 Precept 6.pdf.

[3] Ahmadi, Amir Ali. “Lecture 4.” ORF523: Convex and Conic Optimization. Princeton University,
February 16, 2016.
https://www.princeton.edu/ aaa/Public/Teaching/ORF523/S16/ORF523 S16 Lec4 gh.pdf.

[4] Barnes, Randal J. “Matrix differentiation.” Springs Journal (2006): 1-9.

[5] Deuschle, William J. 2019. Undergraduate Fundamentals of Machine Learning. Bachelor’s thesis,
Harvard College (CS181 course textbook).

[6] Green, Larry. “Cofactors.” Matrices and Applications, Lake Tahoe Community College,
ltcconline.net/greenl/courses/203/MatricesApps/cofactors.htm.

[7] Hu, Pili. Matrix Calculus: Derivation and Simple Application. Technical report, City University of
Hong Kong, 2012.

[8] Lay, David C., Steven R. Lay, and Judi J. McDonald. Linear Algebra and its Applications. (2016).

[9] Magnus, Jan R., and Heinz Neudecker. Matrix Differential Calculus with Applications in Statistics
and Econometrics. John Wiley & Sons, 2019.

[10] Minka, Thomas P. Old and New Matrix Algebra Useful for Statistics.
https://tminka.github.io/papers/matrix/minka-matrix.pdf.

[11] Petersen, Kaare Brandt, and Michael Syskind Pedersen. The Matrix Cookbook. Technical University
of Denmark, 2012.

20

	Introduction
	Fundamentals, Notation, and Basic Properties
	Notation
	Scalars, Vectors, and Matrices
	Numerator vs. Denominator Layout [p. 1]minka

	Six Main Types of Matrix Derivatives
	Scalar by Scalar Derivative
	Scalar by Vector Derivative
	Vector by Scalar Derivative
	Vector by Vector Derivative
	Scalar by Matrix Derivative
	Matrix by Scalar Derivative

	Matrix Differentiation Rules
	Sum Rule
	Product Rule
	Chain Rule

	Select Matrix Derivatives and Identities
	Thinking Element-wise
	Derivative of the Inverse of a Matrix
	Derivative of the Determinant of a Matrix with respect to Itself

	Application to Statistics and Machine Learning
	Matrix Calculus Derivation of Optimal Least-Squares Linear Regression
	Introducing the Problem
	Setting Up the Optimization
	Taking the Matrix Derivative [p. 11]deuschle
	Converting to Matrix Form
	Moore-Penrose Pseudoinverse Result

	Toy Example
	Remarks

	Conclusion

