Matrix Calculus for CS181 (adapted from Math 22b)

Skyler Wu (and Angela Li)

Spring 2022

*Also intended for the brothers and sisters of the Stanford Statistics First-Year Cohort. This is the more
rudimentary version. Written by Skyler Wu ’24.

1 Introduction

Broadly, matrix calculus is the study of multivariable calculus over the spaces of matrices, which allows
for much cleaner calculations, especially in applications to statistics, machine learning, and econometrics,
among others. As we saw in vector calculus, where finding entities such as the gradient or Jacobian
allowed us to perform and execute very elegant calculations and proofs, extending this idea to matrix
calculus allows us to carry this out to an even greater extent.

The crux of matrix calculus involves compiling the many derivatives of either (1) a multivariate function
with respect to one variable or (2) a single function with respect to multiple variables, into a single matrix
or vector, analogous to the ideas regarding derivatives that we have already learned in vector calculus.
Then, in accordance with the many properties of matrices and matrix operations that we learned in 22a,
matrix calculus allows for the execution of elegant calculus via these matrices, bringing together many of
the concepts we have touched upon this year.

In this paper, we will first mathematically introduce the idea of matrix calculus, including fundamental
properties and notation, and the six main types of matrix derivatives, four of which we have already
seen in vector calculus, and two of which are unique to our matrix calculations carried out in this paper.
In this section, we will also be making explicit connections back to both 22a and 22b to emphasize the
elegant intersections of the concepts. Next, we will move to proving various theorems in the form of
matrix derivatives and identities, and will conclude with a brief application of these concepts to machine
learning and provide a derivation via matrix calculus for the well-known least squares regression.

2 Fundamentals, Notation, and Basic Properties
2.1 Notation

We will first review some matrix notation conventions from 22a that are relevant to our upcoming proofs.

2.1.1 Scalars, Vectors, and Matrices

Scalars are denoted by non-bolded, lowercase letters, e.g. a, x, y.

Vectors are defined here as matrices with one column, so all vectors are single-column matrices, i.e.
column vectors or matrices of dimension n x 1 for n € Z*. We denote vectors here with bolded, lowercase

letters, e.g. a, X, y.
ai
a2

an

Matrices will be notated throughout this paper with bolded, uppercase letters, e.g. A, X, Y. Let A be
a m X n matrix, then we have

air a2 - Qip

a1 a2 o a2n
A =

Uml OGm2 " OGmn

We can also use the following notation to denote the matrix A, where the first subscript, ¢, refers to the
corresponding row in the matrix of that element, and the second subscript, j, refers to its corresponding

column in the matrix.
A = [a;],

fori=1,2,--- mand j=1,2,--- ,n |9, p. 4].
Furthermore, we will explicitly define a;; to be the entry in the ith row and j* column of A. Note that
we explicitly use the lowercase a in order to avoid confusion with some other mathematical objects to be

described later.

The identity matrix, denoted I,,, where n is the dimension of this square matrix, is given as follows:

01 0
In: .
0 0 1

The inverse of the matrix A, if it exists (based on the Inverse Matrix Theorem from 22a), is denoted
A~ where
AAT =1,

The transpose of the matrix A, is the n x m matrix, denoted AT as follows:

ail a1 e am1
AT ai2 a2 e Am?2
Aln Gm2 " OGmn

Finally, the determinant of the matrix A is denoted by either of the following:
|A| = det(A).

Now, with the relevant notation in place, we move to a brief discussion of an important distinction in
layout of our matrix derivatives.

2.1.2 Numerator vs. Denominator Layout [10, p. 1]

While learning about matrix calculus, we learned that there are a few different ways, notationally, to
layout these derivatives, and during our research, found that sticking to one notation throughout a series
of calculations is actually imperative to its accuracy. In this paper, we will be using numerator layout,
as we have been subordinately using throughout 22b, but will take a moment here to make this distinction
clear before proceeding.

When taking the derivative of a vector with respect to another vector, i.e. g—i, which we have seen in 22b
(with the Jacobian) and will detail further in the next section, there are often two ways people consider
laying out the resulting derivative matrix. Assuming y is an m X 1 column vector and x is an n x 1
column vector, then this resulting derivative matrix (i.e., the Jacobian matrix), g—i, can either be of size
m x n or of size n x m. This is the primary difference between numerator and denominator layout, which
we will now detail more explicitly.

Numerator layout involves laying out the derivative matrix based on the dimensions of y and x”: in
other words, the resultant g—i matrix should have the same dimensions as yx’. Thus, under numerator

layout, % should be an m x n matrix, i.e., the Jacobian notation we are familiar with from 22b.

Denominator layout involves laying out the derivative matrix based on x and y”: in other words, the
resultant g—i should have the same dimensions as xy’. Thus, under denominator layout, % should be

an n X m matrix.

The implications and structure of numerator layout will be more clear once we introduce the matrix
derivatives explicitly in the next section.

Note: Although we have introduced two main layouts here, there are more notational choices than the
aforementioned numerator and denominator layouts. In some cases, mathematicians or authors may
choose a certain notation independently for one type of derivative, depending on what calculations they
are working with. There are a variety of benefits and drawbacks to each notation, so while we are choosing
to remain consistent with numerator layout throughout this paper, neither is absolutely better than any
other; rather, we simply want to maintain consistency and clarity.

2.2 Six Main Types of Matrix Derivatives

Now that we have established the necessary matrix layout, we will proceed with matrix differentiation.
There are six main types of derivatives expressible as matrices, detailed in the table below [10, p. 1].

Scalar | Vector | Matrix
Scalar % g%«, %
Vector % g—i
Matrix g—%

Table 1: The above table summarizes the six main matrix derivatives, four of which we have seen before
in 22b (3.3.1-3.3.4) and two of which are new (3.3.5 and 3.3.6), that we will be explaining in the next six
subsections. For each derivative in the table, the top row explains what we are taking the derivative of,
and the leftmost column is what entity we are taking this derivative with respect to.

In section 2.2.2, we introduced the ideas of numerator and denominator layout, including the key funda-
mental difference between the two and the importance of sticking with one notation. Again, we will be
using numerator notation here, so our partial derivatives with respect to the numerator will be laid out
according to the shape of the numerator, and the partial derivatives with respect to the denominator will
be laid out according to the shape of the transpose of the denominator.

2.2.1 Scalar by Scalar Derivative

Definition 2.1 (Scalar by Scalar Derivative). From single-variable calculus, the scalar by scalar deriva-

tive, denoted
dy

%a
is a scalar found by taking the derivative of the scalar y with respect to z. [8, p. 106]

2.2.2 Scalar by Vector Derivative
Definition 2.2 (Scalar by Vector Derivative). From 22b, the scalar by vector derivative, denoted

@:[@ LA 9y
ox o1 Oxo OTn a.’E]’

is a 1 X n row vector, in which each element is found by taking the derivative of y with respect to that
corresponding component of x, assuming y is a scalar and x is a n x 1 column vector [8, p. 112].

Remark: As we defined in 22b, the gradient of a scalar function f with respect to a vector x € R"™,
notated Vf, is the transpose of the scalar by vector derivative [8, p. 112].
9y
%
vi=|%
oy
Oxn

From this definition, we saw useful applications to the directional derivative, tangent planes, etc.

2.2.3 Vector by Scalar Derivative

Definition 2.3 (Vector by Scalar Derivative). From 22b, the vector by scalar derivative, denoted

91
G
Oy _ | oz | _ |9ui
ox : Ox
OYm
Or
is a m X 1 column vector (maintaining numerator layout), in which each element is found by taking the
derivative of the i*" component of a m x 1 column vector y, i = 1, --- ,m with respect to a scalar z. 8,
p. 120]

Remark: As we defined in 22b, the tangent vector, whether that be velocity function or another tangent
to a curve, is a vector by scalar derivative.

Note on notation: We emphasize again the importance of maintaining numerator notation throughout
this paper in order to execute sound calculations. For example, our vector by scalar derivative from this
section, g%’ is an x 1 column vector while the scalar by vector derivative from the section before, Wi

ox’
a 1 x n row vector assuming x and y are both n x 1 column vectors.

2.2.4 Vector by Vector Derivative

Definition 2.4 (Vector by Vector Derivative). From 22b, the vector by vector derivative, more familiarly
known to us as the Jacobian matrix, is denoted

Oy1 Oy oy
or1 Ox2 Oxn
dy2 Oyz Oy2
87}’ | Oz Oza Oxn | ayz
ox : ox b
OYm Oym OYm
awl 812 8-’En

and is a m x n matrix, in which the 4, jth element is found by taking the derivative of the the it*

component of a m x 1 column vectory, 1 =1,---

vector x, j =1,---,n [8, p. 209].

2.2.5 Scalar by Matrix Derivative

,m with respect to the j** component of a n x 1 column

Definition 2.5 (Scalar by Matrix Derivative). The scalar by matrix derivative of a scalar function y
with respect to an m x n matrix X is an n X m matrix in which the ¢, jth element is found by taking the
derivative of y with respect to the j,ith element of X [essentially, with respect to x*t [10, p. 1], notated
as follows:

9y dy Ay
0z11 Oz 0Zm1
0, 0
@: zeig ng 8:(:312 _ 8y
X : : : Ozji]
Jy oy dy
(9$1n axgn 8$mn
Example 2.1. Let y = sin(a)b?ed and
a b
x=[td
S0
T (a ¢
xt—[idl.
Then,
dy _ % % _ [eos(a)b?ecd sin(a)b®e’d
oX & sk |2sin(a)becd sin(a)b?e®

2.2.6 Matrix by Scalar Derivative

Definition 2.6 (Matrix by Scalar Derivative). The matrix by scalar derivative of an m x n matrix Y
with respect to a scalar function x is an m X n matrix in which the 4, jth element is found by taking the
derivative of the 7, jth element of Y with respect to x [10, p. 1], notated as follows:

T T z
Oy21 Oy22 OYan
oY _ oz oz oz _ 8yij
Ox : : : or |
8y7nl 8y7n2 8ymn
ox ox ox

Example 2.2. Let

then

2.3 DMatrix Differentiation Rules

Thankfully, the differentiation rules we know from Calc I through Math 22b almost directly carry over
into matrix differentiation.

2.3.1 Sum Rule

By linearity of differentiation, as with single-variable calculus and vector calculus, the derivative of the
sum is the sum of the derivatives [7, p. 8]. Let u and v be scalars, and X be an m x n matrix, then we
have

outo) _ou v
oX X oX’
Similarly, if U and V are m x n matrices and x is a scalar, we have

oU V) _oU o
Oz - Ox Oz

2.3.2 Product Rule

Our product rule for matrix derivatives is analogous to those for vectors and scalars [7, p. 8]. Let u and
v be scalars, and X be an m X n matrix, then we have

Ow) _ Ov Ou
ox "ox TUax

Similarly, if U and V are n X n matrices and x is a scalar, we have

a(UV) 9V _JU
oz Yar " Var

2.3.3 Chain Rule

Finally, our chain rule is also analogous [7, p. 15]. Let u and y be scalars, where u is in terms of X and
y is in terms of © and X be an m X n matrix, then we can take the derivative of y with respect to X as

follows:
0y Oy Ou
X~ oudX’
Similarly, if Y is a m X n matrix in terms of u, and v and x are scalars with u in terms of x, then
oY 0Y Ou
dr Ou Oz’

3 Select Matrix Derivatives and Identities

3.1 Thinking Element-wise

The main strategy for computing matrix derivatives is to first find the partial derivative with respect to an
arbitrary element, and then generalize our results to the entire matrix/vector as appropriate. To demon-
strate the concept of breaking down complex vector and matrix derivatives into element-sized pieces, we
will proceed to prove a few theorems/identities that are commonly used in machine learning and statistics.

Note that in this paper, all vectors should be interpreted as column vectors. Out of consideration for
paper length, in this paper, we will focus on examples of taking the derivative of a scalar function with
respect to a vector or matrix.

Theorem 1. a‘é"vﬁx = 8’5:{“’ =x", for x,w € R" [4, p. 4-6].

Proof. Let f(w) =w’x = x’w (as dot products are commutative). Note that f is a scalar function, so
we are taking the derivative of a scalar function with respect to a vector — our answer, per our notational
norms, should be a row vector. Then, expanding element-wise, we have the following, where z; is the it
element of x and w; is the i*" element of wr:

f(w) = 21wy + zowa + -+ + THWy.

We can rewrite our derivative as:

ow'x _Of _[or o1 o |
Ow Ow owy Owy Owny, | -
For an arbitary w;, using our partial derivative knowledge from Math 22b, we know that there is only

one relevant term, and thus we have:

of O(x1wy + wowg + + - - + Tpwy)
= = Tj.
ow; ow;

Generalizing this result for all partial derivatives with respect to w;, for all ¢ € 1,2,...n, we have:

owlx Of B

ow ow

[wl To ... xn} = XT, as x itself is defined as a column vector.

*note: in some references, the derivative may appear as just x, but for notational consistency, we proceed
with the transpose [11, p. 10].

Intuitively, we can think of this result as the vector/matrix analog of %cx = c. This result will be crucial

in our matrix calculus proof of the least-squares regression solution.
O

Let us try a slightly more involved example.

Theorem 2. agix =2x", with x € R" [7, p. 9].

*note: [7, p. 9] reports 2x, but we include the transpose for notational consistency.

Proof. We proceed similarly as the example above. Let f(x) = x'x = 212 + 22% + -+ + 2,2, Because
we are taking the derivative of a scalar function with respect to a vector, by our notational norms, our
derivative should turn out to be a row vector. We can rewrite our derivative as follows:

8xTx_c‘?f_a(a;12+x22+-~+xn2)_[af af ﬁ]
ox ox ox Oy dwy 't Own]’

Heeding the paradigm of proceeding element-wise, let us find the partial derivative with respect to an
arbitrary x;: We can see from the definition of f that there is only one relevant term, and thus, we have:

of 0@ +z® + - +a,?)
8561' a 8.732

Generalizing this result to all partial derivatives with respect to z;, for all i € 1,2,...n, we have:
Ox'x Of O(@1*4---+aa?)
ox Ox ox

OxTx
ox

This result is the vector/matrix analog of %x2 = 2z.

— [2:31 2T ... an] .

=2 [acl To ... xn] = 2XT, as x is itself a column vector.

O]

The next derivative identity is a generalization of the derivative identity we just proved above. In the
previous identity, we simply set A = I, the identity matrix.

Theorem 3. 8";% =xT(A + AT), where x € R” and A is a constant n x n square matrix [4, p. 6].

Proof. Before we start, we need to remember that xT Ax is scalar. As such, we are still taking the
derivative of a scalar with respect to a vector: by the rules of numerator layout, our answer should be a
row vector.

As usual, we will proceed with our element-wise paradigm. To reiterate, we will treat x as a column

vector. Because this derivative is a bit more complicated than the previous two, let us draw out x, x',

and A for intuition:

Mo
Ty 35 Aln
T
x=| . ,x:[:cl o xn},A:
anl - Aapn
Tn

Let f(x) = x" Ax. We approach piece-by-piece. By definition of matrix multiplication, and looking at
the shapes of x” and A, we see:

n n n

T

x A= E Tiaq E TiGiz - E Tilip | .
i=1 i=1 i=1

Now, let us right-multiply by x:

x1
T
f(x)=x Ax = [E T;aq1 E TiGig E ﬂfiam]) :E (%E SCiaij).
i=1 i=1 i=1 : j=1 i=1
Tn

Because the inner summation has no effect on x;, we can treat it as a “constant” with respect to the
inner summation and rewrite our expression as:

f(X) = Z (.CC]‘ ZCC,‘CL@) = Z Z(wixjaij).
j=1 i=1 j=1i=1

Now, abiding by our paradigm of proceeding element-wise and then generalizing, let us take the partial
derivative of f with respect to an arbitrary xj (we use k to avoid confusion with the indexing of our nested
summations). One non-trivial challenge is to consider which terms in our nested summation are relevant
to our partial derivative with respect to x; — simply speaking, any terms in our nested summation that
have an xj, are relevant terms. A particular term in our nested summation contains an x if i = k, j = k,
or both 7,5 = k.

Naively, we could try to find the relevant terms by setting 7 = k£ and ¢ = k in our nested summation

n n
§ TiTraik + Z TEXjAk;,
i=1 j=1

as our relevant terms, but this is not correct!

separately to get:

The expression above is incorrect because we overcount the term zjxgaxr, which appears in both (now-
separated) summation expressions — once when ¢ = k in the first summation, and once when j = k in the
second summation. Thus, the true list of relevant terms is actually:

n n
O wimpain) + () wewjarg) — Tprgag.
i—1 j=1

Having found the relevant terms (relevant, as in they do not disappear when taking the partial derivative

with respect to zy), we may be tempted to directly take the partial derivative with respect to zy, but
there is a dangerous nuance:

O(zprrakk)
ox,

O(zixpagy)

8.73k = T;Q5k, if 4 7§ k.

= kaakk, while

To account for this nuance, let us rewrite the list of relevant terms. Let fielevant(X) represent the relevant
terms to the partial derivative with respect to xy:

n n
Fretevant (x) = OO mizpaie) + O wrwjars) — (wparas).
i—1 =1

n n
Fretevant (%) = | (Y mizpai) + apzpar | + | (D weajar;) + tptpark | — Tptpg.
T J=Ti#k

Now, we can finally take the partial derivative with respect to zy:

a 8 n n
S _ Ofrclevant _ (D miaw) +2mpann | + | (Y wjany) + 2zpape | — 2wpap.
O O i=Lik j=1j#k
af n n
ka:(D wian) + (Y wjan;) + 2wpap.
i=1itk j=Ti2k

0 " n
8;; (Z Ti@ik) + Trakk + (Z Tjag;) + TpQpk-

i=1,i#k J=Lj#k

n
Z;a Zx'a i).
8xk Z i zk (j:1 J kj)

At this point, we proceed to generalize our expression for an arbitrary partial derivative to the larger
matrix/vector derivative:

oxX AX [leall + Z xjaij) (Z Tia;o + Z xjazj) ... (Z TiGin + Z Tjanj)| .
i=1 Jj=1 i=1 j=1

To make things easier, let us rewrite the derivative as the sum of two vectors:

n n n n
6XTAX
g Titil E ;a2 ... E TiQin E Tja1y g ;a5 ... g Tjlng | .
i=1 j=1 J=1 J=1

At this point we refer back to the visuals of x7 and A:

T
. ailr - Qln
T
x=1|.1],x —[:Bl T2 mn},A:
anl - Apn
xn

We also realize that if

Ax = ,
E :xjan]
Lj=1
then
n n n
T TAT E: . E: e E: .
(AX) =x' Al = Tja1; Tijaz; ... Tj0n,
Jj=1 Jj=1 Jj=1

Lastly, substituting these compact matrix expressions back into our expression for the overall matrix
derivative, we obtain the following final result:

oxT AX

xTA +xTAT = xT(A + AT).
S ox

10

One final observation about this result is that if A is symmetrical (which occurs quite often in the case
of Kernel-Based Regression and other machine learning algorithms), we have the following neat form:

oxT Ax

_ 4T
X (2A).

O

*note: some texts report the result as (A + AT)x, but once again, we are following the numerator layout.

3.2 Derivative of the Inverse of a Matrix

While we will present the majority of our derivations in this paper proceeding element-wise, we include
this theorem to demonstrate the utility of the matrix product rule.

Theorem 4. Let Y be a n X n matrix with an inverse, Y™!, where all the elements of Y are functions
of the scalar z. Then, the derivative of Y~!

oY ' yv19Y

or axY

Proof. By definition of the inverse of a matrix, we know
YY ! =1,
Differentiating, using the product rule for matrix differentiation, we get

Y oY !
1
Y ox + ox

Y =0,

where the derivative of the identity matrix with respect to = equals zero since all elements of I,, are
scalars of value 1. Now, we can rearrange the above equation, so we have

oY 10Y

oz Y=-Y ox

Finally, we right-multiply both sides of the equation by Y1 and applying the first property that YY ! =
I,, to get our final result [1, p. 364].

oyt _ oY
o YY ! = YlaxYl. (1)
oY1 oY
o In:YlaYl. (2)
oY1 Y o4
o =Y oY (3)

3.3 Derivative of the Determinant of a Matrix with respect to Itself

The following theorem was selected because it is used in calculations involving the Multivariate Gaussian
distribution, which is widely used in statistical and machine learning applications. Specifically, the
probability density function of the Multivariate Gaussian distribution involves taking the determinant of
the covariance matrix. We will omit further discussion of the Multivariate Gaussian distribution, and
proceed to focus on the derivative.

11

Odet(A)
0A
Proof. Before we start the formal proof, we must introduce the submatriz, cofactor matriz and adjoint

matriz.

Theorem 5. = A% = det(A)A ™!, where A# is the adjoint matriz of A.

Definition 3.1 (Submatrix). If A is a matrix, then the submatriz Aj; (note the use of the uppercase
Aj;) of A is the matrix formed by deleting the i row and j* column of A [8, p. A15].

Definition 3.2 (Cofactor Matrix). For n x n square matrix A, let a;; be the entry in the it row and
4t column of A. Let Aj; be the submatrix of A corresponding to a;; (i.e. deleting row ¢ and column j).
The corresponding cofactor, C;j, of a;; is defined as (—1)""/det(Aj;) [9, p. 11].

Recall from Math 22a, that we can find the determinant of A through cofactor expansion down any row
or column. For example, if we were to calculate the determinant via cofactor expansion of the first row
of A, then we have:

det(A) = Z alelj.
j=1

The cofactor matriz, C of n X n square matrix A is thus:

Cn - Cip

Co - Oy
cC=| . . }

Cnl e Crm

Definition 3.3 (Adjoint Matrix). For an n X n square matrix A, if C is the cofactor matrix of A, then
the adjoint matriz of A, denoted as A#, is defined as A# = CT [9, p. 11].

Let us write out the terms of A# for intuition, as we will be using it quite frequently in our proof:

Cn - Cm
At ng C.n2
Cln e Cnn
A#
Lemma. If A is invertible, then A~! = .
det(A)

Proof. (of the lemma)

We can rewrite this statement as:
det(A)I = AA#, where I is the n x n identity matrix.

Recall, by definition of cofactor expansion, that we can calculate the determinant of n X n square matrix
A by expanding across any row k:

det(A) =Y ay;Ch;
j=1

12

Let Z = AA?. If i = j, then by definition of matrix multiplication (taking row i from A and column j
from A% as we wrote out above),

zij = zii = ai1Ci1 + ai2Ci2 + -+ - + ainCin = det(A)

In other words, because what we proved above holds for all z;;, we have shown that the diagonal entries
of Z are all det(A). Now, take ¢ # j. By definition of matrix multiplication, we have:

zij = anCj1 + a;2Cj2 + -+ + ainCin

Consider the matrix A/, which is obtained by replacing the j** row of A with the i*" row, so that we have
2 rows with the same entries (inspired by [6]). By the Invertible Matrix Theorem, because the rows of A’
are clearly not linearly independent, A’ T is not invertible and thus has a determinant of 0. Because the
determinant of the transpose is equal to the determinant of the original matrix, it follows that det(A’) = 0.

With this in mind, let us write out the expression for det(A’) via cofactor expansion across its j%* row,
noting that the j** row of A’ is, by our intention, the i** row of A. Also, note that because we are doing
cofactor expansion across the j row of A’, this means that the cofactors we are concerned with are
calculated from submatrices that all do not include any elements of the j** row. Thus, the cofactors we
are working with can be directly copied from the cofactors corresponding to the elements in the j** row
of the original matrix A. Thus, we have:

det(A') = 0 = aiCj1 + aipCja + -+ + ainCjn = 2ij,

from above.

The key result here is that if ¢ # j, then z;; = 0, for Z = AA#. Thus, we conclude that AA# is a matrix
with its diagonal entries equal to det(A), and all other entries equal to 0.

In other words, we have proven the following:
det(A)I = AA7,
O

Now, we can proceed uninterrupted with our proof of the derivative of the determinant with respect
to the matrix itself. Note that the determinant of a n X n square matrix A is always a scalar. By our
understanding of the derivative of a scalar with respect to a matrix, we know that the resultant derivative
should have the same dimensions as the transpose of the original matrix, to stay consistent with notation.

Following our paradigm of proceeding element-wise, we have the following:

ddet(A) adet(A)1 7T
odet(A) _ | Pt 0
OA 8det.(A) o Bdeig(A)
8an1 aann

*note: the presence of the transpose is to stay consistent with our numerator layout notational norms.
We work with the transpose of the derivative matrix (as opposed to just relabeling our indices) because
we want our indices to be consistent across A, C, and A# as much as possible.

The crucial intuition here is that we can find the determinant of a square matrix via cofactor expansion
along any of its rows. Thus, to calculate each of the n? entries of our derivative matrix (or its transpose,

13

in our case), we can be selective in how we express det(A) [7, p. 10]. Namely, when trying to find any
entry in the i’" row of (the transpose) of the derivative matrix, we will express the determinant as the
cofactor expansion down the i*" row of A.

The entry in the i*" row and j** column of (the transpose) of this derivative matrix, for all valid indices
1,7, can be written as below:

ddet(A) _ 9(3 -y airCir)
8az~j aaij

Note that a;; itself appears in one term, and one term only, in this particular summation expression for
the determinant. Also, note that a;; has no influence on Cj;, as we explicitly cross out the ith row and
4% column when calculating Ci;. Thus, we have our result:

Odet(A) _ 0(3 k=1 @irCik)
Oa;j daij

=Gy

Having found the partial derivative (i.e. one entry) with respect to an arbitrary a;;, we conclude the
following:

ddet(A) adet(A) 7T T
odet(A) . 9det(A) Cy --- Oy,
ddet(A) | P dar " ! r
8T = . ‘. B : = : t. . . = C .
Odet(A) Odet(A) ..
D ce Dann Cnl Cnn
At this point, we know that CT = A#. From our lemma, we also know that A~ = det(A)’ Rewriting
e
this expression to isolate the adjoint matrix, we have (presuming A is invertible):
det(A)A™! = A7,
Next, to bring in CT, we have:
CT = A* = det(A)A L.
Finally, we have proven our theorem:
Odet(A) _
0 = A% = det(A)ATL
oA ct(A)
O

4 Application to Statistics and Machine Learning

Finally, we will show how matrix calculus is integral to statistics and machine learning by demonstrating
its applications to linear regression.

4.1 Matrix Calculus Derivation of Optimal Least-Squares Linear Regression

4.1.1 Introducing the Problem

Given a set of n datapoints in the form (x1,y1), (X2,¥2), ... (Xn,¥n), where x; € R” and y; € R! for
i=1,2,...n, we want to find the line-of-best-fit (or plane, or hyperplane, depending on the dimensions
of our data) that best captures the relationship between our input variables xj,...x, and our output
variables y1, ...y, [5, p. 6]. For sake of notation, we will treat each individual x; as a column vector.

14

Remark: In this section, we will generalize the word “line” to mean not just a literal line in 2D, but also
its analogs in higher dimensions (i.e., plane, hyperplane, etc.).

Given that our input variables are all in R” (D as in “dimension”), our line-of-best-fit can be written in
the following form, where y; represents our predicted value (i.e. best guess) of y; for a given input x;.
Let x; be expressed as (x;1,...2;p).

Yi = wo + wiTi1 + -+ + WDTiD.

Note the inclusion of the constant term wy in this expression. Let the column vector w = (wq, w1, ... wp)
be defined as the weights of our line-of-best-fit. Observe that w € RP*1 as opposed to RP.

To account for the constant coefficient term, wg, and to make calculations cleaner, from this point on-
wards, we will redefine each x; by appending a 1 to the beginning of each of our input datapoints: now,
x; = (1,241,...2;p) for i = 1,2,...n. Now, note that each x; € RP*+1. This trick is called the the bias
trick [5, p. 7]. This is useful because we can now write each of our predicted values 7; as 9; = W’ x;.

Our goal now is to find the best set of weights, w for our dataset. Observe that y;—; is the error/difference
between the actual y-value and our prediction. We define the best set of weights, w*, as the set of weights
that minimizes the sum of the squared errors across our data:

n
w* = arg min Z(yl —)%
W=t

We include the squared error for the following intuitive reason: If our set of weights overpredicts y; by 1
and underpredicts y; by 1, the sum of the errors of these two datapoints would be 0, which is clearly not
very reflective of the goodness of our model. The squared error helps us minimize the magnitude of the
errors. We call this expression for the error the least-squares error. Now, we can proceed to set up our
optimization.

4.1.2 Setting Up the Optimization

Recall that because of the bias trick, we can write each of our predicted outputs as 7j; = w’ x; (note that
the same set of weights w are used across all datapoints!). Thus, we can rewrite the equation we want

to minimize as:
n

Fow) = (g — wix)2

=1

4.1.3 Taking the Matrix Derivative [5, p. 11]

To find the minima, we will proceed to take the derivative/gradient of f with respect to the entire vector
w and set it equal to 0. By the chain rule and the sum rule, we have:

n T
% = ;2(% - wai)W =0.
We are confident that taking the gradient will help us find the true optimal weights that minimize our
least-squares error because f is a convex function. For sake of time, we will omit the proof of why f
is a convex function. But, the implication of f being a convex function, for our purposes, is that any
local minimum of f is guaranteed to be a global minimum of f [3, p. 2]. Here, we encounter a matrix
derivative that we had proven earlier in this paper:

15

o(—wix;) _O(WTxi) T

ow ow

Substituting, we have:

o _ Z 2(y; — wx;)(—x;") = 0.

ow “
=1
To make things cleaner, we can multiply everything by — and then split apart the summation expression:

n n n

Z(?Ji —wix;)(xi") = Z (yixi” — (Wwhxp)x; " Z yixil Z (wlxp)x;T = 0.
=1

i=1 i=1
Discarding the intermediate expressions, we have:

n

Z yle — Z WTxi)xiT =0.
i=1

It follows that

n

T T
Z yle = E W Xi)xi .
i=1

Because w* x and y; are scalars, we can take the transpose of both sides of our equation to get rid of the
transpose signs and clean things up:

n n T
(Z yixi')" = (Z(WTXi)XiT> .
i=1 j

T

Recall from property of dot products, that the output of a dot product between two vectors is always

scalar, and recall from general vector properties, that for scalar ¢ and vector x, cx = xc. Also, recall that

dot products are commutative: w!x = xTw. Thus, because we are trying to solve for the optimal w, we

have:
n
T
y,x1 = W Xj)Xj = x1 wl Xj) xi (X" W)
=1 =1

Once again, discarding the intermediate expressions, we have:
n n
T
> yixi =Y xi(xi’ w
i=1 i=1

4.1.4 Converting to Matrix Form

Our end goal is to find and isolate the optimal w. To get rid of the summation signs, we can rewrite the
sums as the products of matrices. At this point, let us define X to be an n (no. of datapoints) x (D +1)
(dimensions of each x;, with the appended 1) matrix:

—x17 = T11 0 TY(DH41)
T
X2t — T21 0 T(D+41)
X_: . =
T
<~ Xn — Inl - Tp(D+1)

*note: we add in the transpose symbol because, as defined above, x; are column vectors.
*note: because of the bias trick, ;1 = 1, for i = 1,2,...,n.

For clarity, let us write out X7 € R(PHD*7 a5 well: it will become useful for intuition very soon.

Z11 e Tnl
T12 T Tn2
X' =
T1(D+1) " Tp(D+1)

Let us define y to be an n x 1 column vector with entries y, ... yn:

Y1
Y2
y=1.
Yn
n
The key observation here is that, by definition of matrix multiplication, X”y = Z YiXi.
i=1

Next, note that because w can be treated as a constant and is unchanged by the indices of the summation,
as opposed to x;j, which clearly changes with i, we can pull the w out of the summation:

n n
Z Xi(XiTW) = (Z XiXiT)W.
i=1 i=1

Observe that for all x;, x;x;. returns an REPHD*(D+) matrix (as x; is a column vector and x;! is a row

vector). Naturally, the summation of all the x;x;7 should also be R(P+)x(D+1)

To find an elegant, compact matrix expression for this not-so-friendly-looking summation, we proceed by
the element-wise paradigm. Note that if Q = XX (using k to avoid confusion), then g;; = Tx;xy;.

n n
Now, consider Z = Z xkka: it follows that z;; = Z ThiThyj-
k=1 k=1
Let S = XTX, with X as defined earlier. Recall that X is constructed by vertically stacking x;”’s.

n
With this definition of S, and our intuition about matrix multiplication, we conclude that s;; = Z TpiThj-
k=1

n
Because S € RIPOTVXDH) 7 ¢ ROFUXDHY - and because s;j = z;; = ZJUlm‘ﬂija it follows that
k=1

n
XTX=8=Z=) xixi .
k=1
4.1.5 Moore-Penrose Pseudoinverse Result

Rewriting our optimization results from 4.1.3, we have:

n

n
yixi = » (Wlxp)xi.
> >
i=1

i=1

17

n n
T
E yixi = (§ XX)W.
i=1 i=1
Substituting our matrix expressions for these summations, we have:

XTy = (XTX)w.
Assuming that X7 X is invertible (we omit the proof for now), we can solve for w* [5, p. 11]:
w* = (XITX)"1xTy.

note: the w is used to indicate that this is our optimal set of weights.
*note: [9, p. 287-288] arrives at the same result using a different proof.

The expression (X7 X)™1XT is known as the Moore-Penrose Pseudoinverse, which itself has many unique
properties that are outside the scope of this paper. Intuitively, we can think of it as the equivalent of the
“Inverse” of a non-square matrix [5, p. 11].

4.2 Toy Example

To provide a more numerical, illustrative example of the Optimal Least-Squares problem, we created a
toy data set and attempted to find the line (or in this case, plane, because each x; € R?) of best fit.

The Python code implementation can be found here.

For this toy example, we will be working with data of the form (x; = (1, %2),¥;). In other words, for
each data point, our x; € R?, and our y; € R!.

To generate our toy data set, we randomly generated 20 datapoints, with each x;; and z;2 generated from
a random Uniform distribution between 0 and 20. We generated each y; through the following simple
formula, where ¢ ~ N(0,0.12) (i.e., mean 0 and standard deviation 0.1) is included to generate some
random noise:

Y; = 2251 + 32 + €.

Thus, we would expect the calculated vector of optimal weights w* to be somewhere around wj = 0
(because the mean of the noise term is 0), w} = 2, wj = 3, for our plane of best fit:

Ui = wh + wiTi + wrTo.
To form our data matrix, X, we append a column of 1s as discussed earlier in the bias trick to get the
X matrix shown below (only showing 9 datapoints for formatting), where the second column is all of our
x1’s and the third column is all of our z5’s. Note that in this example, X € R?0%3, Our y vector of true
targets is just a column vector in R%0,

[1.00 4.17 15.36] [54.397
1.00 9.63 13.76 60.55
1.00 841 7.74 39.96
1.00 17.18 12.30 71.27
1.00 3.42 8.55 32.51
X=1 .) . , Y =)
1.00 5.41 14.05 44.98
1.00 19.16 2.57 45.94
1.00 14.04 9.69 57.21
[1.00 5.95 10.32] 142,90

18

https://github.com/skbwu/22b_matrixcalc_linreg

Plugging in these values for X and y into our derived formula for the Optimal Least Squares Linear
Regression weights, w* = (X7 X)Xy, we calculate our optimal w* to be:

wy = —0.0763
w* = | wi=2.0008
w} = 3.0040

It follows that our plane of best fit equation is:
Ui = —0.0763 + 2.0008x;1 + 3.0040x;2.
This is very close to the true data-generating formula, noting that the mean of € is 0:
Yi = €+ 2x;1 + 3xio.
We include the following plot to show how our calculated optimal weights w* really do capture the linear

regression relationship of our data. The plane-of-best-fit does fit all of our data points very well:

Moore-Penrose Pseudoinverse Plane-of-Best-Fit

100

[e)]
[=)
y-axis

Yrage 5 O

Figure 1: Visualization of our Optimal Weights’ Performance

4.3 Remarks

Linear regression is a fundamental, yet very powerful technique in applied machine learning and statistics.
The results we derived above tell us that for any data set with scalar y;’s, we can easily find the line-of-
best-fit (or plane, or hyperplane, depending on dimensions) through our points (as long as each data point
is of the same dimensions, of course). With our w* and the resultant line-of-best-fit, we can effectively
predict the output variable of a new datapoint, ¥,ew, given a new input variable Xpew. For example,
we could use linear regression to predict children’s heights as a function of their parents’ heights and
other environmental factors. We could also use linear regression to predict a company’s next-quarter
sales based on certain market variables and consumer data. The uses are endless.

5 Conclusion

From this brief overview of matrix calculus, it is evident that simplifying calculations involving compli-
cated derivatives by condensing these derivatives into elegant matrices with flexible properties allows us
to derive and perform a wide array of computations and proofs, a principle that we have already seen

19

frequently in 22b with vector calculus. We also saw that these matrix derivatives have extremely useful
applicability to fields such as statistics and machine learning, as detailed in this paper with the example
of least squares regression. This being said, there are countless other identities involving matrix deriva-
tives and other applications in the above fields that delve further into the relevancy of matrix calculus in
these interdisciplinary applications, such as the multivariate distributions in statistics, namely the mul-
tivariate Gaussian distribution and the derivation of its maximum likelihood estimator (MLE), principal
components in psychometrics [9, p. 273-448], and many more.

References

1]
2]

[10]

[11]

Abadir, Karim M., and Jan R. Magnus. Matrixz Algebra. Vol. 1. Cambridge University Press, 2005.

Adams, Ryan. “COS 302 Precept 6.” COS 302 / SML 305: Mathematics for Numerical Computing
and Machine Learning, Princeton University, 2020,
www.cs.princeton.edu/courses/archive/spring20/cos302/files/COS_302_Precept_6.pdf.

Ahmadi, Amir Ali. “Lecture 4.” ORF523: Convex and Conic Optimization. Princeton University,
February 16, 2016.
https://www.princeton.edu/ aaa/Public/Teaching/ORF523/516/ORF523_S16_Lec4_gh.pdf.

Barnes, Randal J. “Matrix differentiation.” Springs Journal (2006): 1-9.

Deuschle, William J. 2019. Undergraduate Fundamentals of Machine Learning. Bachelor’s thesis,
Harvard College (CS181 course textbook).

Green, Larry. “Cofactors.” Matrices and Applications, Lake Tahoe Community College,
ltcconline.net /greenl /courses/203 /MatricesApps/cofactors.htm.

Hu, Pili. Matriz Calculus: Derivation and Simple Application. Technical report, City University of
Hong Kong, 2012.

Lay, David C., Steven R. Lay, and Judi J. McDonald. Linear Algebra and its Applications. (2016).

Magnus, Jan R., and Heinz Neudecker. Matriz Differential Calculus with Applications in Statistics
and Econometrics. John Wiley & Sons, 2019.

Minka, Thomas P. Old and New Matrix Algebra Useful for Statistics.
https://tminka.github.io/papers/matrix /minka-matrix.pdf.

Petersen, Kaare Brandt, and Michael Syskind Pedersen. The Matriz Cookbook. Technical University
of Denmark, 2012.

20

	Introduction
	Fundamentals, Notation, and Basic Properties
	Notation
	Scalars, Vectors, and Matrices
	Numerator vs. Denominator Layout [p. 1]minka

	Six Main Types of Matrix Derivatives
	Scalar by Scalar Derivative
	Scalar by Vector Derivative
	Vector by Scalar Derivative
	Vector by Vector Derivative
	Scalar by Matrix Derivative
	Matrix by Scalar Derivative

	Matrix Differentiation Rules
	Sum Rule
	Product Rule
	Chain Rule

	Select Matrix Derivatives and Identities
	Thinking Element-wise
	Derivative of the Inverse of a Matrix
	Derivative of the Determinant of a Matrix with respect to Itself

	Application to Statistics and Machine Learning
	Matrix Calculus Derivation of Optimal Least-Squares Linear Regression
	Introducing the Problem
	Setting Up the Optimization
	Taking the Matrix Derivative [p. 11]deuschle
	Converting to Matrix Form
	Moore-Penrose Pseudoinverse Result

	Toy Example
	Remarks

	Conclusion

