[1]:

(CS181 Practical Section

March 21, 2023

packages we will use throughout the entire section
import numpy as np

import matplotlib.pyplot as plt

import seaborn as sns

import pandas as pd

from tqdm.notebook import tqdm

1 Introduction

Written by Skyler Wu 24

In CS181, we emphasize building machine learning models from scratch to fully understand how
these models work under-the-hood. However, outside of the classroom (and in your Practical I
assignment), you will be asked to apply machine learning models to real-world problems. Coding
such models from scratch may be impractical (and unoptimized). Fortunately, there are many
well-written and well-maintained packages that allow us to quickly create, test, and deploy machine
learning models.

In this section, we will explore two different packages for machine learning models: scikit-learn
and PyTorch. The first package, scikit-learn, is mainly used for traditional machine learning
models like variants of linear regression, logistic regression, and Random Forest, etc. The second
package, PyTorch, which you were introduced to in HW3, is mainly used for deep learning (i.e.,
neural networks).

One important, but often neglected, part of ML pedagogy is learning how to load data in different
forms. For the purposes of this notebook, we will work with three toy datasets, which I have
deliberately altered into three file formats: a regression dataset for diabetes disease progression
(.txt), a multiclass classification dataset of handwriting digits (.csv), and a binary classification
dataset of breast cancer images (.pickle). All the data can be found here, hosted on Harvard
College’s Google Drive.

My goal by the end of this session is to make you a lot more comfortable with loading data and
using, but more importantly further exploring, scikit-learn and PyTorch. This session is not
intended to turn you into a “master” of scikit-learn or PyTorch, but rather to give you more
familiarity and confidence with these packages.

A note on computational resources: most modern computers (20144) should be able to run all of
the models and utilities in scikit-learn and train small neural networks from scratch in PyTorch
with little to no bottleneck, and in reasonable time. However, if you would like to train much larger

https://drive.google.com/drive/u/1/folders/1Pg5SAVRWMMk9TwsPSgxwpUXEz78my6Tt

[2]:

[2]:

neural networks (with potentially millions of parameters), it is highly recommended that you use
Google Colab, which gives you access to GPUs (and speeds up your code significantly).

I hope you find this helpful!

2 Loading Data

2.1 Loading .csv Datasets

Let us begin by loading our diabetes regression dataset. For a more detailed description of each of
the features in our dataset, please look at the info.txt file in the diabetes_regression_dataset
folder. The features have already been scaled and normalized, which explains why some values may
look a bit odd at first glance.

For this first dataset, we are loading our .csv data file using a package called Pandas. Pandas loads
our data into a data structure called a DataFrame, which we store in a variable called df _variables.
We can use the .head() function in Pandas to take a peek at what our data looks like:

load our regression dataset using pandas (pd)
df _diabetes = pd.read_csv("diabetes_regression_dataset/diabetes_data.csv")

let's take a quick look using .head()
df diabetes.head()

age sex bmi bp s1 s2 s3 \
0.038076 0.050680 0.061696 0.021872 -0.044223 -0.034821 -0.043401
-0.001882 -0.044642 -0.051474 -0.026328 -0.008449 -0.019163 0.074412
.0856299 0.050680 0.044451 -0.005671 -0.045599 -0.034194 -0.032356
-0.089063 -0.044642 -0.011595 -0.036656 0.012191 0.024991 -0.036038
0.005383 -0.044642 -0.036385 0.021872 0.003935 0.015596 0.008142

S W N ~- O
o

s4 s5 s6 prog
-0.002592 0.019908 -0.017646 151.0
-0.039493 -0.068330 -0.092204 75.0
.002592 0.002864 -0.025930 141.0
0.034309 0.022692 -0.009362 206.0
-0.002592 -0.031991 -0.046641 135.0

S W N —- O
|
(@)

However, while Pandas DataFrames are very visually appealing, they are not too easy to work
with from a ML modeling perspective. We would much prefer using NumPy arrays/matrices.
Fortunately, Pandas has a convenient function called .to_numpy() that converts the data inside a
Pandas DataFrame into a NumPy matrix.

For this specific data file, the last column, prog, stores a numerical measure of diabetes disease
progression. This is the target variable that we will be trying to predict. In other words, prog is
our y vector.

The first ten columns in our data are the features that we will use to predict prog. In CS181
language, the first ten columns form X, our data matrix (also called the “design matrix”). In
general, it is best practice to print out the shapes of our features and targets.

[3]:

[4]:

[5]:

we will convert everything into numpy for compatibility
diabetes_numpy = df_diabetes.to_numpy()

always good practice to check the dimensions of your data
print(f"Diabetes Data Shape: {diabetes_numpy.shapel}")

the first 10 columns are features, and the 11th is our target
X_diabetes, y_diabetes = diabetes_numpyl[:, :-1], diabetes_numpyl[:, -1]

print X and y shapes
print(f"Diabetes X Shape: {X_diabetes.shape}")
print(f"Diabetes y Shape: {y_diabetes.shapel}")

Diabetes Data Shape: (442, 11)
Diabetes X Shape: (442, 10)
Diabetes y Shape: (442,)

2.2 Loading .txt Datasets

While our diabetes dataset was in .csv format, our MNIST handwritten-digits are stored in two
.txt files, one for the actual digits themselves (i.e., our X matrix), with each row of X representing
a picture of one digit in flattened form) and another for the labels (i.e., our y vector, encoding which
digit is each picture representing). We can use the NumPy’s .1loadtxt () function to directly load
our data as NumPy arrays/matrices. As always, we check the shapes of our features and targets:

our digits classification dataset is in a different format
X_digits = np.loadtxt("digits_classification_dataset/mnist_X")
y_digits = np.loadtxt("digits_classification_dataset/mnist_y")

check dimensions of our data
print(£"Digits X Shape: {X_digits.shapel}")
print(£f"Digits y Shape: {y_digits.shapel}")

Digits X Shape: (6000, 784)
Digits y Shape: (6000,)

We see that our dataset contains 6,000 digit images, each of dimension 784. Note that each image
of a digit is actually a 28 x 28 grid of pixel values. In order to view a particular digit, we have to
reshape its picture representation from a one-dimensional array of 784 values to a two-dimensional
28 x 28 matrix. Let’s display a couple of these images:

let's wisualize some of our samples
plt.figure(dpi=150, figsize=(12,4))

go through the first three indezes/datapoints in our set
for i in range(3):

create our subplot

[6]:

plt.subplot(1,3,i+1)

show our picture
plt.imshow(X_digits[i] .reshape(28,28))

label our picture
plt.xlabel(f"True Label: {int(y_digits[i])}")

hide the ticks
plt.xticks([])
plt.yticks([])

beauttfy

plt.suptitle("Example MNIST Digits and Labels")
plt.tight_layout ()

plt.show()

Example MNIST Digits and Labels

I_-I

True Label: 5

True Label: 0 True Label: 4

2.3 Loading .pickle datasets

Finally, our last dataset of cancerous or benign breast cell images is stored as a .pickle file. The
pickle package allows us to save virtually any object in Python created from any package for us
to use later. We can pickle lists, integers, NumPy arrays, classes, functions, specific instances of
classes, ... you name it!

This dataset is already pre-divided into train and test sets, so we will load them accordingly. We are
working with 0 and 1 labels (binary classification): 0 corresponds to benign cells and 1 corresponds
to cancerous cells.

Special thanks to Professor Michael Brenner (SEAS) for allowing me to use this dataset.

import pickle

importing our data

with open("breast_cancer_classification/breast_cancer_data.pickle", "rb") as,
—file:
breast_cancer_data = pickle.load(file)

extract the train and test imgs
Xtrain_bc = breast_cancer_datal['train_img']
ytrain_bc = np.array(breast_cancer_datal'train_1bl'])

extract the train and test labels: O for benign and 1 for malignant
Xtest_bc = breast_cancer_datal['test_img']
ytest_bc = np.array(breast_cancer_datal['test_1bl'])

Let’s take a look at the shape of our training data. We see that we are working with 46 training
points, each with resolution 768 x 896 (high definition!). The 3 in the last dimension means that
we are working with three-channel color images, one for each of red, green, and blue.

[7]: | # print out the shape of training data
print (Xtrain_bc.shape)

(46, 768, 896, 3)

Let’s display a few of these images and their labels. Again we will use the plt.imshow function:

[8]: plt.figure(dpi=150, figsize=(12,4))
for i in range(3):

create our subplot
plt.subplot(1,3,i+1)

plot our image
plt.imshow(Xtrain_bc[i])

put our word label based on the 0 or 1
if ytrain_bc[i] ==

plt.xlabel("benign")
else:

plt.xlabel("malignant")

beautify
plt.xticks([])
plt.yticks([])

more beautifying

plt.suptitle("Select Breast Cancer Cell Images")
plt.tight_layout ()

plt.show()

[9]:

[10]:

Select Breast Cancer Cell Images

benign benign

3 Train-Test Split

In most of the HW assignments, for simplicity, we’ve trained and calculated our model performances
on the same exact dataset. As taught in lecture, in reality, we always split our data into train and
test data sets. Fortunately, scikit-learn has a train_test_split features that allows us to
shuffle our data and divide it into train and test sets. Let’s use train_test_split on our diabetes
and digits datasets:

from sklearn.model_selection import train_test_split

divide our data into train/test sets: 'test_size' specifies what proportion,
—of our data to make as the test set

Xtrain_diabetes, Xtest_diabetes, ytrain_diabetes, ytest_diabetes =
—train_test_split(X_diabetes, y_diabetes,

- test_size=0.2, random_state=0)

let's repeat the process for our digits data
Xtrain_digits, Xtest_digits, ytrain_digits, ytest_digits =,
—train_test_split(X_digits, y_digits,

—test_size=0.2, random_state=0)

As always, let us print out the shapes of our newly-splitted train and test sets for each dataset:

let's check the shapes of the diabetes dataset splits
print(f"Diabetes Train X Shape: {Xtrain_diabetes.shapel}")
print(f"Diabetes Train y Shape: {ytrain_diabetes.shapel}")
print(f"Diabetes Test X Shape: {Xtest_diabetes.shapel}")
print(f"Diabetes Test y Shape: {ytest_diabetes.shapel}")

Diabetes Train X Shape: (353, 10)
Diabetes Train y Shape: (353,)

[11]:

[12]:

Diabetes Test X Shape: (89, 10)
Diabetes Test y Shape: (89,)

let's check the shapes of the MNIST digit splits
print(£"Digits Train X Shape: {Xtrain_digits.shape}")
print(f"Digits Train y Shape: {ytrain_digits.shapel}")
print(£"Digits Test X Shape: {Xtest_digits.shapel}")
print(£f"Digits Test y Shape: {ytest_digits.shapel}")

Digits Train X Shape: (4800, 784)
Digits Train y Shape: (4800,)
Digits Test X Shape: (1200, 784)
Digits Test y Shape: (1200,)

4 Scikit-learn Model API

Having created train-test splits for all three of our datasets, we can start implementing some of
the models that we’ve learned in class. Many of the traditional models we’ve encountered (i.e.,
basically everything except for neural networks) can be found in a package called scikit-learn.
For more details, please reference the scikit-learn documentation here.

Let’s begin with linear models, or in other words, LinearRegression and its variants, including
LASSO and Ridge. The scikit-learn package also supports the CV (or “cross-validated”) versions
of these models. As we learned in class, LASSO and Ridge have a regularization parameter that we
have to tune to our particular dataset. The LassoCV and RidgeCV models allow us to automatically
search thousands of possible regularization parameter values to find the best one using cross-
validation.

In general, most supervised (and some unsupervised) scikit-learn will have a .fit() function
and a .predict () function. The scikit-learn is very elegant in the sense that if you know how
to use one model, you basically have a working understanding of how to use all of them. Again,
for more detailed specifications and model-specific functions, please see the documentation.

import these models
from sklearn.linear_model import LassoCV, RidgeCV, LinearRegression

LinearRegression / Lasso / Ridge
model = LassoCV(eps=1e-8, n_alphas=10000, max_iter=500, fit_intercept=True)

fit our model - sklearn finds the optimal weights
model.fit(Xtrain_diabetes, ytrain_diabetes)

test our model - make our predictions
lasso_preds = model.predict(Xtest_diabetes)

calculate our RMSE
lasso_error = np.sqrt(np.mean((lasso_preds - ytest_diabetes) *x* 2))
print(lasso_error)

https://scikit-learn.org/stable/modules/classes.html

[13]:

[14]:

58.6057938329856

We can also access the fitted weights and other parameters. In the case of linear models like
Lasso(CV), we can look at the coefficients, intercepts, and more. Note that the variable names
that scikit-learn uses may be slightly different from what we covered in class, so always, always
consult the documentation!

print out the weights
print(f"weights: {model.coef_}")

print out the bias term
print(f"bias term: {model.intercept_}")

for CV estimators: print out the best regulariation parameter
print(f"best alpha: {model.alpha_}")

weights: [-19.03086342 -224.42463893 567.57103815 286.38384447 -220.0953289
-0. -182.50611053 72.69839255 573.03429224 37.20467889]

bias term: 152.41849934480888

best alpha: 0.02114986169413159

The scikit-learn also supports logistic regression, including penalized variants. Let’s try training
a logistic regression model on our breast cancer data.

from sklearn.linear_model import LogisticRegression

create our LogisticRegression classifier
model = LogisticRegression(penalty='12"', tol=0.0001, max_iter=500)

SVM requires that each datapoint be a wvector, and not a picture / matriz of,
—pizels

Xtrain_bc_flattened = Xtrain_bc.reshape(Xtrain_bc.shape[0], -1)
Xtest_bc_flattened = Xtest_bc.reshape(Xtest_bc.shapel[0], -1)

fit our SVM model
model .fit(Xtrain_bc_flattened, ytrain_bc)

make our predictions
1lr_preds = model.predict(Xtest_bc_flattened)

calculate + display our accuracy
1r_accuracy = np.mean(ytest_bc == lr_preds)
print (lr_accuracy)

0.8333333333333334

And, of course, scikit-learn also has support for SVM max-margin classifiers, under the name
SVC. Let’s experiment with training an SVM. We didn’t explicitly cover SVMs in lecture this year,
but they are still a very useful family of classifiers that we can play around with.

[15]:

[16]:

from sklearn.svm import SVC

create our SVM classifier
model = SVC(C=2.0, kernel="rbf")

SVM requires that each datapoint be a vector, and not a picture / matriz of,
—pizels

Xtrain_bc_flattened = Xtrain_bc.reshape(Xtrain_bc.shape[0], -1)
Xtest_bc_flattened = Xtest_bc.reshape(Xtest_bc.shape[0], -1)

fit our SVM model
model.fit(Xtrain_bc_flattened, ytrain_bc)

make our predictions
SVM_preds = model.predict(Xtest_bc_flattened)

calculate + print our accuracy
SVM_accuracy = np.mean(ytest_bc == SVM_preds)
print (SVM_accuracy)

0.6666666666666666

There are also many classifiers and regression methods that are outside the scope of this class
that one can find in scikit-learn. For the practical assignment, you are highly encouraged to
experiment with methods that we have not covered in class!

from sklearn.ensemble import RandomForestClassifier

RandomForest

model = RandomForestClassifier(n_estimators=500, max_depth=None, n_jobs=-1)
model.fit (Xtrain_bc.reshape (Xtrain_bc.shape[0], -1), ytrain_bc)

make our predictions

rf_preds = model.predict(Xtest_bc.reshape(Xtest_bc.shape[0], -1))

print (np.mean(rf_preds == ytest_bc))

0.75

5 Hyperparameter GridSearch using Scikit-learn

As we’ve seen above, there are many tunable parameters in each of our models. In real-life ap-
plications, we have to train and test many models of the same type, each with slightly different
hyperparameters. It would be a pain to tune them all individually, but thankfully, scikit-learn
has a GridSearchCV tool that allows us to run a search over many combinations of hyperparameters
and select the best combination of hyperparameter values.

All we have to do is specify the parameters that we want to search over, the values we want
to test, and the model of interest. Then, GridSearchCV will perform cross-validation over each

of our hyperparameter combinations and then return a fitted model on the best hyperparameter
combination. Here, “best” is defined as the model that has the lowest mean cross-validated error.
Let’s try doing a gridsearch over an SVM classifier, with the choice of SVM over some other models
just because SVMs are relatively quick to train.

[17]: from sklearn.model_selection import GridSearchCV

these are the settings that we will tumne: 'C', 'kernel'
param_grid = {'C' : [0.01, 0.1, 1.0],
'kernel' : ['rbf', 'sigmoid'],}

instantiate our template model
SVM = SVCO)

instantiate our gridsearch estimator - cv=None defaults to the 5-fold crossy,
—validation

SVM_CV = GridSearchCV(estimator=SVM, param_grid=param_grid, n_jobs=-1, cv=None,
—verbose=1)

SVM_CV.fit(Xtrain_bc_flattened, ytrain_bc)

Fitting 5 folds for each of 6 candidates, totalling 30 fits

[17]: GridSearchCV(estimator=SVC(), n_jobs=-1,
param_grid={'C': [0.01, 0.1, 1.0], 'kernel': ['rbf', 'sigmoid'l},
verbose=1)

[18]: # convert our results to a pd.DataFrame
SVM_results = pd.DataFrame(SVM_CV.cv_results_).
—sort_values(by=['rank_test_score'])
SVM_results.head(5)

[18]: mean_fit_time std_fit_time mean_score_time std_score_time param_C \

4 9.182994 0.524200 3.207454 0.598405 1.0

0 11.986179 0.134863 3.632008 0.095737 0.01

1 8.123810 2.237687 1.506374 0.110337 0.01

2 8.572459 1.831425 4.016006 0.423852 0.1

3 7.890301 0.822720 1.620348 0.125106 0.1

param_kernel params splitO_test_score \

4 rbf {'C': 1.0, 'kernel': 'rbf'} 0.9

0 rbf {'C': 0.01, 'kernel': 'rbf'} 0.6

1 sigmoid {'C': 0.01, 'kernmel': 'sigmoid'} 0.6

2 rbf {'C': 0.1, 'kernel': 'rbf'} 0.6

3 sigmoid {'C': 0.1, 'kermel': 'sigmoid'} 0.6

splitl_test_score split2_test_score split3_test_score split4_test_score \

4 0.444444 0.777778 0.777778 0.888889

10

[19]:

[20] :

0] 0.555556 0.555556 0.555556 0.666667

1 0.555556 0.555556 0.555556 0.666667

2 0.555556 0.555556 0.555556 0.666667

3 0.555556 0.555556 0.555556 0.666667
mean_test_score std_test_score rank test_score

4 0.757778 0.165164 1

0 0.586667 0.043546 2

1 0.586667 0.043546 2

2 0.586667 0.043546 2

3 0.586667 0.043546 2

print the best results
print (SVM_CV.best_params_)

{'C': 1.0, 'kernel': 'rbf'}

Once we have our best model and its associated parameters, we can actually directly use it for
prediction. But for educational purposes, let’s create a new classifier using the best parameters
that we found in the previous cells and make some predictions.

TRAIN YOUR FINAL MODEL USING PARAMETERS FROM GRID SEARCH HERE
best_params = SVM_CV.best_params_

select our best model from the gridsearch (teechically, you can directly use,
<SVM_CV for predictions, too!)
SVM_best = SVC(C=best_params['C'], kernel=best_params['kernel'])

fit i1t on our entire train data
SVM_best.fit(Xtrain_bc_flattened, ytrain_bc)

make our predictions + calculate our metrics
y_preds = SVM_best.predict(Xtest_bc_flattened)

With our predictions, let’s proceed to the next section for a more thorough discussion on the
performance metrics that scikit-learn helps us use:

6 Metrics: Accuracy, Per-Class Accuracy, and Confusion Matrix

In addition to mean train or test accuracy, there are many other metrics that we can use to evaluate
how well our model is performing. Some of these metrics include balanced accuracy (which takes the
relative sizes of each class into consideration), the ROC-AUC (Receiver Operating Characteristic)
curve, the full classification_report feature in scikit-learn, and confusion matrices.

The ROC-AUC curve plots the true positive rate and false positive rate as a function of different
classification thresholds (which we usually set to 0.5). The confusion matrices help us discern
class-specific biases / behavior in our model.

For additional metrics, please see here for reference.

11

https://scikit-learn.org/stable/modules/model_evaluation.html

[21]: | # here are some metrics imports
from sklearn.metrics import accuracy_score # for mean accuracy
from sklearn.metrics import balanced_accuracy_score # takes into account classy

—~S81zes

ROC-AUC
from sklearn.metrics import RocCurveDisplay

for the full classification report
from sklearn.metrics import classification_report

quick confusion matrices
from sklearn.metrics import confusion_matrix

[22]: | # accuracy + balanced accuracy

print("Mean Accuracy: ", round(accuracy_score(ytest_bc, y_preds), 3))
print("Balanced Accuracy: ", round(balanced_accuracy_score(ytest_bc, y_preds),
-3))

Mean Accuracy: 0.75
Balanced Accuracy: 0.757

[23]: # ROC-AUC - spectify the model, X data, and y data. yes, sum has a probabilistic,
—component!
svc_disp = RocCurveDisplay.from_estimator (SVM_best, Xtest_bc_flattened,
—ytest_bc)
plt.plot(np.linspace(0, 1.0, 30), np.linspace(0, 1.0, 30), 'g——"')
plt.show()

12

[24]:

[25] :

=
=

=
oa
i

=
(=]
i

=
T
i

=
e
i

Tue Positive Rate (Positive label: 1)

=
=
i

— SVC(AUC =10.74)

I
0.0 0.2

I
0.4

I
0.6

I
0.8 10

False Positive Rate [Positive label: 1)

generate our classtification report: prectision, recall, f1, etc.

target_names

print(classification_report(ytest_bc, y_preds, target_names=target_names))

= ['benign', 'malignant']

precision recall fl-score

benign 0.67 0.80 0.73
malignant 0.83 0.71 0.77
accuracy 0.75
macro avg 0.75 0.76 0.75
weighted avg 0.76 0.75 0.75

confusion matriz: O=benign, l1=malignant

cfm = confusion_matrix(ytest_bc, y_preds)

support

5
7

12
12
12

we can plot our confusion matrices, and toggle the wvalues to appear

sns.
plt.
plt.
.ylabel("True Class")

plt

plt.

heatmap(cfm, annot=True)

title("Confusion Matrix of Breast Cancer SVM")

xlabel ("Predicted Class")

show ()

13

Confusion Matrnx of Breast Cancer SVM

-5.0

-45

Tue Class

-15

-10

Predicted Class

7 Saving and Loading Models using Pickle

As we saw earlier, some models and gridsearches may take quite a bit of time to train. We would
hope to not have to retrain our models each time we open our notebook. Our good friend the
pickle package can be of assistance here: we can simply save our trained models as .pickle files.

[26]: # tell python to create a new file for writing ('wb’')
with open("best_SVM.pickle", "wb") as file:

write the file
pickle.dump(SVM_best, file)

[27]: # let's load our file so we can use it quickly, without having to gridsearch +,
—train again
with open('best_SVM.pickle', "rb") as file:

store our loaded model im a wvariable
SVM_best = pickle.load(file)

With SVM_best loaded, let’s take a look at the parameters to verify everything worked out:

[28]: print(f"Kernel: {SVM_best.kernell}")
print (f"Regularization C: {SVM_best.C}")

14

[29]:

[30]:

Kernel: rbf
Regularization C: 1.0

8 Dimension Reduction and Combining Dimension Reduction
with Models (OPTIONAL FOR PRACTICAL I)

Soon, we will start covering dimensionality reduction techniques like PCA, short for “principal
component analysis.” You will not be required to use PCA on Practical I, but I thought I should
still include this section just for completeness. Feel free to skip this section for now.

In a future HW, you will be implementing PCA from scratch. However, in practice, scikit-learn
has a PCA model already implemented for you! Let’s try fitting PCA on our MNIST digits and our
breast cancer images.

8.1 On MNIST

For visualization purposes, let’s only calculate the first two principal components on MNIST.
from sklearn.decomposition import PCA

create our PCA object that will calculate the first two components.
pca = PCA(n_components=2)

fit our PCA to the training data, and transform our data into ttsy
—2-dimensional representation
Xtrain_digits_pca = pca.fit_transform(Xtrain_digits)

let's check the shape of our lower dim representation
print(f"Lower-Dim PCA Representation Train Data Shape: {Xtrain_digits_pca.
—shape}")

Lower-Dim PCA Representation Train Data Shape: (4800, 2)

We can also visualize the first two components’ coordinates for each data point, and this is decent
heuristic of how well certain classifiers can potentially perform on our data. Do you notice that
some classes are clustered a lot closer together than others? Which classes have more overlap?

scatter plot the two components just to see i1f the data is separable by eye
plt.figure(dpi=150, figsize=(8,6))

i1terate through all the digits
for digit in range(10):

get the samples that correspond to this digit
samples = Xtrain_digits_pcalytrain_digits == digit]

scatter plot the first two PCA component
plt.scatter(samples[:,0], samples[:,1], label=str(digit))

15

beautify

plt.xlabel("Principal Component 1")

plt.ylabel("Principal Component 2")

plt.legend(loc="upper right", ncol=2)
plt.title("2-Component PCA Visualization of MNIST Digits")
plt.tight_layout()

plt.show()

2-Component PCA Visualization of MNIST Digits

1000 ~

O o~y oW,

500 1

Principal Component 2

—500 -

—1000 A

—-1000 -500 0 500 1000 1500 2000
Principal Component 1

8.2 On Breast Cancer Samples
Let’s also try computing PCA with 2 principal components on our breast cancer image dataset.

[31]: # create our PCA object that will calculate the first two components.
pca = PCA(n_components=2)

fit our PCA to the training data, and transform our data into %its,
—2-dimensional representation

Xtrain_bc_pca = pca.fit_transform(Xtrain_bc_flattened)

scatter plot the two components just to see tf the data ts separable by eye

16

plt.figure(dpi=150, figsize=(6,5))

get the benign cells + scatterplot first two components

benign_samples = Xtrain_bc_pcalytrain_bc == 0]

plt.scatter(benign_samples[:,0], benign_samples[:,1], label="benign",
—color="blue")

get the malignant cells + scatterplot first two components

malignant_samples = Xtrain_bc_pcalytrain_bc == 1]

plt.scatter(malignant_samples[:,0], malignant_samples[:,1], label="malignant",
—color="red")

beauttfy

plt.xlabel("Principal Component 1")

plt.ylabel("Principal Component 2")

plt.legend(loc="upper right", ncol=2)

plt.title("2-Component PCA Visualization of Breast Cancer Cells")
plt.tight_layout ()

plt.show()
2-Component PCA Visualization of Breast Cancer Cells
60000 - , .
® benign ® malignant
40000 A
°
o e °.
g 20000 ° ° g
é e o °
L ()
8 o ® .. o
g 01 o ° & ® ° °
= ° L
£ °
~20000 - P ¢ °
°
—40000 - ° °
—-40000 —20000 0 20000 40000 60000

Principal Component 1

17

[32]:

[33]:

PCA can also be used in conjunction with supervised learning! As we saw earlier, our breast cancer
data is comprised of extremely high-resolution images, which means that we are working with very
large matrices. At scale, working with such high-resolution images may be incredibly slow and
computationally expensive. What if first performed PCA on our breast cancer images, and then
used something like logistic regression for classification?

As we will soon cover in class, PCA dimension reduction also allows us to potentially weed out
some noise from our data and only return the actually relevant features. Let’s give it a shot:

create our PCA object that will calculate the first 10 principal components
pca = PCA(n_components=10)

fit + transform our training data
Xtrain_bc_lowdim = pca.fit_transform(Xtrain_bc_flattened)

train a logistic regression on the PCA transformed training data
1r_pca = LogisticRegression()
1r_pca.fit(Xtrain_bc_lowdim, ytrain_bc)

transform our testing data (DO NOT FIT AGAIN!)
Xtest_bc_lowdim = pca.transform(Xtest_bc_flattened)

make our test predictions
preds_lowdim = lr_pca.predict(Xtest_bc_lowdim)

check our accuracy
print(f"Accuracy: {np.mean(preds_lowdim == ytest_bc)}")

Accuracy: 0.6666666666666666

9 Quick Neural Networks in PyTorch

And now, we reach the penultimate section of this document, which is on training deep-learning
neural networks. But first, let’s start with some imports.For those of you with older computers,
it is highly, highly recommended that you train neural networks in Google Colab, which has GPU
support — more on that in a minute.

overall PyTorch
import torch

just so I don't have to type torch.nn each time
import torch.nn as nn

gets us access to optimizers like SGD, Adam, RMSprop, etc.
import torch.optim as optim

Neural networks, as a class of models, make very, very extensive use of matrix multiplication

18

[34]:

[35]:

operations. GPUs (yes, the stuff you use to play Battlefield and Call of Duty with) are designed to
be able to perform matrix multiplication operations a lot faster than CPUs. Odds are that your
laptop does not have a supported Nvidia GPU, but fortunately, Google Colab does have free GPU
runtime support!

If you use Google Colab, you may find that training neural networks with a GPU may be orders
of magnitude faster than with just your laptop’s CPU. The below code just tells PyTorch to use a
CUDA-supported GPU if it can find one on our system, and to use CPU otherwise.

A note to folks using M1/M2-powered MacBooks (November 2020+): as of last summer (around
June 2022), both PyTorch and TensorFlow (another common deep-learning package) have built-in
support for Apple Silicon GPUs. However, in practice, even Apple’s M2 Pro GPUs are still quite
a bit slower than dedicated Nvidia GPUs.

Fun fact: PyTorch is developed by Facebook / Meta, while TensorFlow is developed by Google /
Alphabet.

setting our device
if torch.cuda.is_available():
device = torch.device('cuda')
else:
device = torch.device('cpu')

We can very quickly create a neural network in PyTorch using the nn.Sequential() tool. Let’s
create a simple toy network for use on the MNIST digits dataset. All we have to input is a sequence
of layers that we want PyTorch to feed a data point through. For example, in the below network,
we have one hidden linear layer of 40 nodes, and an output layer of 10 nodes (one for each of our
ten classes). In between, we have a ReLU activation function.

This is literally it. Note that I did mot add a softmax function at the end of my model.
This was intentional. =~ When we start making predictions / calculating losses, PyTorch’s
nn.CrossEntropyLoss () automatically applies softmax for us, so it would be actually incorrect to
do it now.

The “sequential” part of nn.Sequential() just means that we are exclusively building a feed-
forward network. Inputs can only be passed forward through the network. More on that later.

create a model

model = nn.Sequential(
nn.Linear (in_features=784, out_features=40),
nn.RelLU(Q),
nn.Linear (in_features=40, out_features=10),

Of course, our model isn’t trained yet, so all of the weights are still at their initial randomized states.
Yes, PyTorch automatically initiates weights when we define a model using nn.Sequential (). Let’s
just try making some predictions so that we can see in more detail how PyTorch actually computes
and outputs predictions.

The with torch.no_grad() in the first line below tells PyTorch to not keep track of any of gra-
dients while we are running our code inside the wrapper. This is important because when we are

19

testing / evaluating our model (as opposed to training), we do not want our model to keep learning.
This also saves computational power.

[36]: # tell pytorch to mot track gradients
with torch.no_grad():

convert our input data to a float tensor
inputs = torch.tensor(Xtest_digits).float()

make our predictions -- all we have to do %s pass in our input data.
preds = model(inputs)

let's just print out the shape of our preds
print (f"Shape of preds: {preds.shapel}")

let's take a look at one of our preds: these are non-softmazed outputs!
print (f"One pred vector: {preds[0]}")

rr

Let's figure out which integer class we are predicting.

1. Note that softmaz converts wectors into probabilities: e {z_i} /.
—sumie {z_i}}

2. However, if we only care about the integer class, that's the same thing,
—as finding the class/index with the highest non-softmazed value

3. Think about the behavior of the softmazxz function!

rr

... thus we can just take the argmaz of each Tow, corresponding to azis/
—dim=1
preds = preds.argmax (1)

these are the integer preds, where 8 corresponds to class 8, etc.!
print (f"test predictions: {predsl}")

let's check our accuracy before training anything
print(f"test accuracy: {torch.sum(preds == torch.tensor(ytest_digits)) /,
—ytest_digits.shape[0]}")

Shape of preds: torch.Size([1200, 10])
One pred vector: temsor([-21.1195, -20.2115, 20.2862, 0.3006, 9.6508,
-3.7324, 0.0276,
2.8223, -8.7955, 23.4283])
test predictions: temnsor([9, 9, 1, .., 9, 4, 5])
test accuracy: 0.09833333641290665

Having defined my simple model, now let’s start training it. In the below cell, we move our model
to either CPU or GPU (as specified earlier), define a loss function, and set an optimizer. In lecture,
we learned about gradient descent, but there are actually many other gradient-based optimizers

20

[37]:

[38]:

like Adam and RMSprop that perform a lot better in certain situations than vanilla gradient descent.
I like using Adam.

moving the model to Tight device
model.to(device)

spectfy our loss function - CrossEntropyLoss. DO NOT INPUT PROBABILITIES!
loss_func = nn.CrossEntropyLoss()

define our optimizer — could also do Adam, RMSprop, SGD, and tell it to keep,
—~track of our model's parameters.

the lr is for learning rate, and weight_decay is a regularization parameter.
optimizer = optim.Adam(model.parameters(), lr=1e-3, weight_decay=1e-5)

Now, we train our simple neural network. I'll let the comments in my code do the talking, instead
of writing full paragraph descriptions. One thing to note that is that our MNIST digits dataset is
pretty small, so I did not use a DataSet object. In practice, if we are dealing with tens of thousands
of datapoints, we might want to use a DataSet object to divide our data into small batches to feed
into the network so that we don’t overload our memory and crash our system. For simplicity, I'll
ignore that for today:

metrics we want to collect
train_accuracy_list = []
train_loss _list = []
test_accuracy_list = []
test_loss_list = []

train for a given number of epochs
for epoch in tqdm(range(20), desc="Epoch"):

get our input imgs and labels. We have to convert from NumPy (original),
—to torch.tensors()

PyTorch ezpects inputs as floats, and labels as longs (i.e., high-memory,
—1integers)

inputs
labels

torch.tensor (Xtrain_digits) .float()
torch.tensor (ytrain_digits) .long()

move our inputs and labels to the right device.
inputs, labels = inputs.to(device), labels.to(device)

reset the gradient (we don't want to have any residual gradients from,
—previous training epochs)

optimizer.zero_grad()

compute our NON-SOFTMAXED outputs using the current weights: this 1s oum,
— forward-prop

21

outputs = model(inputs) # implicitly calls the .forward() function —- morey
—on that later

calculate the cross—entropy loss (note that this automatically appliesy
—softmazx!)

loss = loss_func(outputs, labels) # calculate the loss

calculate the gradients of our loss with respect to all relevant,
—parameters: this is back-prop
loss.backward() # calculate the gradient

make a small step update to our parameters
optimizer.step()

—--—-— everything below this line ts just to collect some analytics/metrics

update our train_loss
train_loss_list.append(loss.item()) # .item() extracts the pure Python,
—number, with no gradient implications.

calculate + record our train + test accuracy. We're in evaluation mode,
—now and NOT training!
with torch.no_grad():

get our predictions with the current weights: torch.mazr returns,
< (values, indices). I just want indices.

you could also just use argmaz(dim=1)

_, predicted = torch.max(outputs.data, 1)

get our train accuracy: number of matched labels / total number of,
—labels

train_accuracy = torch.sum(predicted == labels) / labels.size(0)

add to our list
train_accuracy_list.append(train_accuracy)

get our test inputs and labels. same process as earlier
test_inputs = torch.tensor(Xtest_digits).float()
test_labels = torch.tensor(ytest_digits).long()

move to the right device
test_inputs, test_labels = test_inputs.to(device), test_labels.

—to(device)

run our test set inputs through the network
test_outputs = model(test_inputs)

22

get our test_loss
test_loss = loss_func(test_outputs, test_labels)

record our test_loss
test_loss_list.append(test_loss.item())

make our predictions based on mazw.
_, test_predicted = torch.max(test_outputs.data, 1)

get our train accuracy
test_accuracy = torch.sum(test_predicted == test_labels) / test_labels.
—size(0)

add to our list
test_accuracy_list.append(test_accuracy)

Epoch: 0%l | 0/20 [00:00<7, ?it/s]

Let’s plot our train and test accuracies and losses over time. There’s not much technical code here,
just matplotlib.pyplot.

[39]: fig, ax = plt.subplots(l, 2, figsize=(16, 5), dpi=200)

ax[0] .plot(train_accuracy_list, label="Train Accuracy")
ax[0] .plot(test_accuracy_list, label="Test Accuracy")
ax[0] .set_title("Accuracy Over Epochs")

ax[0] .1legend ()

ax[1] .plot(train_loss_list, label="Train Loss")
ax[1] .plot(test_loss_list, label="Test Loss")
ax[1] .set_title("Loss Over Epochs")

ax[1] .legend()

plt.suptitle("Simple nn.Sequential Fully-Connected Neural Network")
plt.tight_layout ()
plt.show()

Simple nn.Sequential Fully-Connected Neural Network

Accuracy Over Epochs Loss Over Epochs

—— Train Loss
Test Loss.

0.7 — Train Accuracy
Test Accuracy

0.6

05

0.4

0.3

0.2

0.1

0.0 2.5 5.0 75 10.0 12.5 15.0 17.5 0.0 25 5.0 75 10.0 12.5 15.0 17.5

23

[40] :

[41]:

[42] :

10 Custom Neural Networks in PyTorch

The nn.Sequential module is helpful for building quick networks, but sometimes we might want
to be able to customize our network a bit more. What we can do is to create a custom class that
inherits PyTorch’s nn.Module class, so that we still have access to a lot of core neural network
functions. For this last section, let’s try building a convolutional neural network (CNN). Stanford’s
(CS231 has a very nice explanation on CNNs.

This is not a course on deep-learning, so I will omit excessive technical details on CNNs, but the
main building block for CNNs is the convolutional layer, which is found in PyTorch as nn.Conv2d ()
(documentation).

One quirk with PyTorch’s nn.Conv2d () layer is that it expects image datasets to be of the form
(N,C,W, H), where N is the number of data points, C' is the number of color channels (in our case,
1 because MNIST digits are in greyscale), W is the width in pixels of each image, and H is the
height in pixels of each image. Our current data is in the form (N, W, H,C'). We have to reshape
our train and test image data:

the "_nn" suffixz just tells us that we are ready to feed our convolutional,
—neural network!

Xtrain_digits_nn = Xtrain_digits.reshape(-1, 1, 28, 28)

Xtest_digits_nn = Xtest_digits.reshape(-1, 1, 28, 28)

Now, let us start making our neural network. For clarity, I will reimport the packages so we know
what packages we are using.

import torch
import torch.nn as nn
import torch.optim as optim

setting our device
if torch.cuda.is_available():
device = torch.device('cuda')
else:
device = torch.device('cpu')

The below code shows how we can create a CNN class by inheriting the nn.Module class. In essence,
any neural network in PyTorch is defined by just two main functions. First, the __init__ con-
structor function defines + initializes the layers (and nonlinearities) of our network and any other
supporting parameters. Second, the forward function tells PyTorch what to do with any input
data that we try to pass through our network.

We do not have to manually initialize the possibly-millions of weights or specify how to update
them. Everything is already implemented through the inherited nn.Module class.

24

https://cs231n.github.io/convolutional-networks/
https://pytorch.org/docs/stable/generated/torch.nn.Conv2d.html

[43] :

inherits the nn.Module class
class CNN(nn.Module):

constructor

def

__init__(self):

call the parent constructor (for nn.Module)
super () .__init__QO

define the layers: do NOT include the nonlinearities yet!

first set of convolution + pooling: see documentation about specifics
self.convl = nn.Conv2d(in_channels=1, out_channels=16, kernel_size=3)

to increase robusiness ... again, this is optional reading
self .pooll = nn.MaxPo00l12d(2)

second set of convolution + pooling
self.conv2 = nn.Conv2d(in_channels=16, out_channels=32, kernel_size=3)
self.pool2 = nn.MaxPo00l2d(2)

dropout layer to randomly drop neurons: for regularization
self.dropout = nn.Dropout()

end with three linear layers, this ts general practice
self.fcl = nn.Linear (800, 500)
self.fc2 = nn.Linear (500, 100)
self.fc3 = nn.Linear (100, 10)

define how the neural network processes ONE data point (which gemeralizes,
—1instantly into a whole dataset)

aka: given T, how do we get the output? Just pass it through the layers.
def forward(self, x):

first set of convolution + pooling
x = self.convl(x)
X
X

self .pooll(x)
torch.relu(x)

second set of convolution + pooling
self.conv2(x)
self.pool2(x)
torch.relu(x)

#
X
X
X

*

the drop out layer
x = self.dropout(x)

25

flatten + linear layers

x = torch.flatten(x, start_dim=1)
x = self.fcl1(x)

X = torch.relu(x)

x = self.fc2(x)

X = torch.relu(x)

x = self.fc3(x)

return x

The below code looks virtually identical to our earlier nn.Sequential neural network. We in-
stantiate our model, move it to the right device, define a loss function, and tell PyTorch which
parameters to update.

[44] : | # instantiate our model
model_cnn = CNN()

moving the model to Tight device
model cnn.to(device)

specify our loss function
loss_func = nn.CrossEntropyLoss()

define our optimizer — could also do Adam, RMSprop, SGD
optimizer = optim.Adam(model_cnn.parameters(), lr=1le-3, weight_decay=1le-5)

This training loop is almost directly copy-pasted from my earlier training loop.

[45]: # metrics we want to collect
train_accuracy_list = []
train_loss_list = []
test_accuracy_list = []
test_loss_list = []

train for a given number of epochs
for epoch in tqdm(range(20), desc="Epoch"):

query data for inputs (images) + labels: [inputs, labels]
inputs = torch.tensor (Xtrain_digits_nn).float()
labels = torch.tensor(ytrain_digits).long()

move to the right device.
inputs, labels = inputs.to(device), labels.to(device)

reset the gradient
optimizer.zero_grad()

26

forward prop, backward prop, make incremental step

outputs = model_cnn(inputs) # implicitly calls the .forward() function
loss = loss_func(outputs, labels) # calculate the loss

loss.backward() # calculate the gradient

optimizer.step() # take our incremental update of the parameters

update our train_loss
train_loss_list.append(loss.item()) # exztracts the pure Python number, withy
—no gradient implications.

calculate + record our train + test accuracy (TRAINING!)
with torch.no_grad():

get our predictions with the current weights: torch.maxr returns,
—values, tndices
_, predicted = torch.max(outputs.data, 1)

get our train accuracy
train_accuracy = torch.sum(predicted == labels) / labels.size(0)

add to our list
train_accuracy_list.append(train_accuracy)

get our test inputs and labels
test_inputs = torch.tensor(Xtest_digits_nn).float()
test_labels = torch.tensor(ytest_digits).long()

move to the right device
test_inputs, test_labels = test_inputs.to(device), test_labels.
—to(device)

run our test set inputs through the network
test_outputs = model_cnn(test_inputs)

get our test_loss
test_loss = loss_func(test_outputs, test_labels)

record our test_loss
test_loss_list.append(test_loss.item())

make our predictions based on maz.
_, test_predicted = torch.max(test_outputs.data, 1)

get our train accuracy

test_accuracy = torch.sum(test_predicted == test_labels) / test_labels.
—size(0)

27

add to our list
test_accuracy_list.append(test_accuracy)

Epoch: 0% | | 0/20 [00:00<?7, ?it/s]
The plotting code below is the same as well.

[46]: fig, ax = plt.subplots(l, 2, figsize=(16, 5), dpi=200)

ax[0] .plot(train_accuracy_list, label="Train Accuracy")
ax[0] .plot(test_accuracy_list, label="Test Accuracy")
ax[0] .set_title("Accuracy Over Epochs")

ax[0] .1legend ()

ax[1] .plot(train_loss_list, label="Train Loss")
ax[1] .plot(test_loss_list, label="Test Loss")
ax[1] .set_title("Loss Over Epochs")

ax[1] .1legend ()

plt.suptitle("Custom Convolutional Neural Network")
plt.tight_layout ()
plt.show()

Custom Convolutional Neural Network

Accuracy Over Epochs Loss Over Epochs

—— Train Accuracy \ —— Train Loss
Test Accuracy g \ Test Loss

0.6

0.5

0.4

0.3

0.2

0.1

0.0 25 5.0 75 10.0 12.5 15.0 17.5 0.0 25 5.0 75 10.0 12.5 15.0 17.5

Just to review, let’s try making some test predictions using our CNN and display the confusion
matrix. Yes, PyTorch and scikit-learn can work with each other! You may have to convert
everything into NumPy arrays, though!

[47]: | # make our test predictions with NO GRADIENT!
with torch.no_grad():

set our model to evaluation mode
model cnn.eval()

get our test inputs and labels
test_inputs = torch.tensor(Xtest_digits_nn).float()

28

test_labels = torch.tensor(ytest_digits).long()

make our predictions and get the integer classes using argmax this time
ypreds_test = model_cnn(test_inputs) .argmax(dim=1)

convert our predictions into numpy
ypreds_test = ypreds_test.detach() .numpy()

calculate our test accuracy
print(f"Accuracy: {np.mean(ypreds_test == ytest_digits)}")

Accuracy: 0.73

[48]: | # compute + display our confusion matriz
plt.figure()
cfm = confusion_matrix(ytest_digits, ypreds_test)
sns.heatmap(cfm, annot=True, fmt='g')
plt.title("Confusion Matrix of MNIST CNN")
plt.xlabel("Predicted Class")
plt.ylabel("True Class")
plt.show()

Confusion Matrix of MNIST CNN

- 120

- 100

Tue Class

Predicted Class

29

11 Final Remarks

I hope you found this guide helpful and that you are now more confident to take on Practical I.
As always, you are more than welcome to reach out to the course staff on Ed for any lingering
questions or concerns. You can also reach me via email at skylerwu@college.harvard.edu if you

have any specific questions on what we covered in this guide.

Best of luck everyonel!

30

	Introduction
	Loading Data
	Loading .csv Datasets
	Loading .txt Datasets
	Loading .pickle datasets

	Train-Test Split
	Scikit-learn Model API
	Hyperparameter GridSearch using Scikit-learn
	Metrics: Accuracy, Per-Class Accuracy, and Confusion Matrix
	Saving and Loading Models using Pickle
	Dimension Reduction and Combining Dimension Reduction with Models (OPTIONAL FOR PRACTICAL I)
	On MNIST
	On Breast Cancer Samples

	Quick Neural Networks in PyTorch
	Custom Neural Networks in PyTorch
	Final Remarks

